图书介绍

概率论和随机过程 原书第2版 英文pdf电子书版本下载

概率论和随机过程  原书第2版  英文
  • (美)凯罗勒夫著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510044106
  • 出版时间:2012
  • 标注页数:358页
  • 文件大小:71MB
  • 文件页数:369页
  • 主题词:概率论-高等学校-教材-英文;随机过程-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

概率论和随机过程 原书第2版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part Ⅰ Probability Theory 3

1 Random Variables and Their Distributions 3

1.1 Spaces of Elementary Outcomes,σ-Algebras,and Measures 3

1.2 Expectation and Variance of Random Variables on a Discrete Probability Space 9

1.3 Probability of a Union of Events 14

1.4 Equivalent Formulations of σ-Additivity,Borel σ-Algebras and Measurability 16

1.5 Distribution Functions and Densities 19

1.6 Problems 21

2 Sequences of Independent Trials 25

2.1 Law of Large Numbers and Applications 25

2.2 de Moivre-Laplace Limit Theorem and Applications 32

2.3 Poisson Limit Theorem 34

2.4 Problems 35

3 Lebesgue Integral and Mathematical Expectation 37

3.1 Definition of the Lebesgue Integral 37

3.2 Induced Measures and Distribution Functions 41

3.3 Types of Measures and Distribution Functions 45

3.4 Remarks on the Construction of the Lebesgue Measure 47

3.5 Convergence of Functions,Their Integrals,and the Fubini Theorem 48

3.6 Signed Measures and the Radon-Nikodym Theorem 52

3.7 Lp Spaces 54

3.8 Monte Carlo Method 55

3.9 Problems 56

4 Conditional Probabilities and Independence 59

4.1 Conditional Probabilities 59

4.2 Independence of Events,σ-Algebras,and Random Variables 60

4.3 π-Systems and Independence 62

4.4 Problems 64

5 Markov Chains with a Finite Number of States 67

5.1 Stochastic Matrices 67

5.2 Markov Chains 68

5.3 Ergodic and Non-Ergodic Markov Chains 71

5.4 Law of Large Numbers and the Entropy of a Markov Chain 74

5.5 Products of Positive Matrices 76

5.6 General Markov Chains and the Doeblin Condition 78

5.7 Problems 82

6 Random Walks on the Lattice Zd 85

6.1 Recurrent and Transient Random Walks 85

6.2 Random Walk on Z and the Reflection Principle 88

6.3 Arcsine Law 90

6.4 Gambler's Ruin Problem 93

6.5 Problems 98

7 Laws of Large Numbers 101

7.1 Definitions,the Borel-Cantelli Lemmas,and the Kolmogorov Inequality 101

7.2 Kolmogorov Theorems on the Strong Law of Large Numbers 103

7.3 Problems 106

8 Weak Convergence of Measures 109

8.1 Definition of Weak Convergence 109

8.2 Weak Convergence and Distribution Functions 111

8.3 Weak Compactness,Tightness,and the Prokhorov Theorem 113

8.4 Problems 116

9 Characteristic Functions 119

9.1 Definition and Basic Properties 119

9.2 Characteristic Functions and Weak Convergence 123

9.3 Gaussian Random Vectors 126

9.4 Problems 128

10 Limit Theorems 131

10.1 Central Limit Theorem,the Lindeberg Condition 131

10.2 Local Limit Theorem 135

10.3 Central Limit Theorem and Renormalization Group Theory 139

10.4 Probabilities of Large Deviations 143

10.5 Other Limit Theorems 147

10.6 Problems 151

11 Several Interesting Problems 155

11.1 Wigner Semicircle Law for Symmetric Random Matrices 155

11.2 Products of Random Matrices 159

11.3 Statistics of Convex Polygons 161

Part Ⅱ Random Processes 171

12 Basic Concepts 171

12.1 Definitions of a Random Process and a Random Field 171

12.2 Kolmogorov Consistency Theorem 173

12.3 Poisson Process 176

12.4 Problems 178

13 Conditional Expectations and Martingales 181

13.1 Conditional Expectations 181

13.2 Properties of Conditional Expectations 182

13.3 Regular Conditional Probabilities 184

13.4 Filtrations,Stopping Times,and Martingales 187

13.5 Martingales with Discrete Time 190

13.6 Martingales with Continuous Time 193

13.7 Convergence of Martingales 195

13.8 Problems 199

14 Markov Processes with a Finite State Space 203

14.1 Definition of a Markov Process 203

14.2 Infinitesimal Matrix 204

14.3 A Construction of a Markov Process 206

14.4 A Problem in Queuing Theory 208

14.5 Problems 209

15 Wide-Sense Stationary Random Processes 211

15.1 Hilbert Space Generated by a Stationary Process 211

15.2 Law of Large Numbers for Stationary Random Processes 213

15.3 Bochner Theorem and Other Useful Facts 214

15.4 Spectral Representation of Stationary Random Processes 216

15.5 Orthogonal Random Measures 218

15.6 Linear Prediction of Stationary Random Processes 220

15.7 Stationary Random Processes with Continuous Time 228

15.8 Problems 229

16 Strictly Stationary Random Processes 233

16.1 Stationary Processes and Measure Preserving Transformations 233

16.2 Birkhoff Ergodic Theorem 235

16.3 Ergodicity,Mixing,and Regularity 238

16.4 Stationary Processes with Continuous Time 243

16.5 Problems 244

17 Generalized Random Processes 247

17.1 Generalized Functions and Generalized Random Processes 247

17.2 Gaussian Processes and White Noise 251

18 Brownian Motion 255

18.1 Definition of Brownian Motion 255

18.2 The Space C([0,∞)) 257

18.3 Existence of the Wiener Measure,Donsker Theorem 262

18.4 Kolmogorov Theorem 266

18.5 Some Properties of Brownian Motion 270

18.6 Problems 273

19 Markov Processes and Markov Families 275

19.1 Distribution of the Maximum of Brownian Motion 275

19.2 Definition of the Markov Property 276

19.3 Markov Property of Brownian Motion 280

19.4 The Augmented Filtration 281

19.5 Definition of the Strong Markov Property 283

19.6 Strong Markov Property of Brownian Motion 285

19.7 Problems 288

20 Stochastic Integral and the Ito Formula 291

20.1 Quadratic Variation of Square-Integrable Martingales 291

20.2 The Space of Integrands for the Stochastic Integral 295

20.3 Simple Processes 297

20.4 Deftnition and Basic Properties of the Stochastic Integral 298

20.5 Further Properties of the Stochastic Integral 301

20.6 Local Martingales 303

20.7 Ito Formula 305

20.8 Problems 310

21 Stochastic Differential Equations 313

21.1 Existence of Strong Solutions to Stochastic Differential Equations 313

21.2 Dirichlet Problem for the Laplace Equation 320

21.3 Stochastic Difrerential Equations and PDE's 324

21.4 Markov Property of Solutions to SDE's 333

21.5 A Problem in Homogenization 336

21.6 Problems 340

22 Gibbs Random Fields 343

22.1 Definition of a Gibbs Random Field 343

22.2 An Example of a Phase Transition 346

Index 349

精品推荐