图书介绍

Lectures on Hyperbolic Geometrypdf电子书版本下载

Lectures on Hyperbolic Geometry
  • Riccardo Benedetti,Carlo Pertronio 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7510046322
  • 出版时间:2012
  • 标注页数:334页
  • 文件大小:68MB
  • 文件页数:349页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Lectures on Hyperbolic GeometryPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter A.Hyperbolic Space 1

A.1 Models for Hyperbolic Space 1

A.2 Isometries of Hyperbolic Space:Hyperboloid Model 3

A.3 Conformal Geometry 7

A.4 Isometries of Hyperbolic Space:Disc and Half-space Models 22

A.5 Geodesics,Hyperbolic Subspaces and Miscellaneous Facts 25

A.6 Curvature of Hyperbolic Space 37

Chapter B.Hyperbolic Manifolds and the Compact Two-dimensional Case 45

B.1 Hyperbolic,Elliptic and Flat Manifolds 45

B.2 Topology of Compact Oriented Surfaces 55

B.3 Hyperbolic,Elliptic and Flat Surfaces 58

B.4 Teiehmüller Space 61

Chapter C.The Rigidity Theorem(Compact Case) 83

C.1 First Step of the Proof:Extension of Pseudo-isometries 84

C.2 Second Step of the Proof:Volume of Ideal Simplices 94

C.3 Gromov Norm of a Compact Manifold 103

C.4 Third Step of the Proof:the Gromov Norm and the Volume Are Proportional 105

C.5 Conclusion of the Proof,Corollaries and Generalizations 121

Chapter D.Margulis'Lemma and its Applications 133

D.1 Margulis'Lemma 133

D.2 Local Geometry of a Hyperbolic Manifold 140

D.3 Ends of a Hyperbolic Manifold 143

Chapter E.The Space of Hyperbolic Manifolds and the Volume Function 159

E.1 The Chabauty and the Geometric Topology 160

E.2 Convergence in the Geometric Topology:Opening Cusps The Case of Dimension at least Three 174

E.3 The Case of Dimension Different from Three Conclusions and Examples 184

E.4 The Three-dimensional Case:Jorgensen's Part of the So-called Jorgensen-Thurston Theory 190

E.5 The Three-dimensional Case.Thurston's Hyperbolic Surgery Theorem:Statement and Preliminaries 196

E.5-ⅰ Definition and First Properties of T3(Non-compact Three-manifolds with"Triangulation"Without Vertices) 198

E.5-ⅱ Hyperbolic Structures on an Element of T3 and Realization of the Complete Structure 201

E.5-ⅲ Elements of T3 and Standard Spines 207

E.5-ⅳ Some Links Whose Complements are Realized as Elements of T3 210

E.6 Proof of Thurston's Hyperbolic Surgery Theorem 223

E.6-ⅰ Algebraic Equations of H(M)(Hyperbolic Structures Supported by M∈T3) 224

E.6-ⅱ Dimension of H(M):General Case 234

E.6-ⅲ The Case M is Complete Hyperbolic:the Space of Deformations 251

E.6-ⅳ Completion of the Deformed Hyperbolic Structures and Conclusion of the Proof 256

E.7 Applications to the Study of the Volume Function and Complements about Three-dimensional Hyperbolic Geometry 267

Chapter F.Bounded Cohomology,a Rough Outline 273

F.1 Singular Cohomology 273

F.2 Bounded Singular Cohomology 277

F.3 Flat Fiber Bundles 280

F.4 Euler Class of a Flat Vector Bundle 287

F.5 Flat Vector Bundles on Surfaces and the Milnor-Sullivan Theorem 294

F.6 Sullivan's Conjecture and Amenable Groups 303

Subject Index 321

Notation Index 324

Referenees 326

精品推荐