图书介绍

地道风与空气源热泵研究pdf电子书版本下载

地道风与空气源热泵研究
  • 李永安著;邢德安译 著
  • 出版社: 南京:东南大学出版社
  • ISBN:9787564157142
  • 出版时间:2015
  • 标注页数:191页
  • 文件大小:61MB
  • 文件页数:200页
  • 主题词:地道风-热泵系统-研究

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

地道风与空气源热泵研究PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 Introduction 1

1.1 Current situation of energy source in China 1

1.2 Utilization of renewable energy resource 4

1.3 Traditional utility pattern of air through tunnel(hereafter referred to as“ATT”) 6

Chapter 2 Characteristic of Formation Temperature Change 9

2.1 Source of formation energy 9

2.1.1 Solar radiation energy 9

2.1.2 Biological heat 10

2.1.3 Geothermal resources 10

2.2 Thermo-physical property of formation soil 10

2.2.1 Heat conductivity coefficient λ 10

2.2.2 Specific heat cp 11

2.2.3 Thermal diffusivity α 11

2.3 Change rules of soil temperature inside formation 13

2.4 Numerical mathematical model for original soil temperature field 13

2.4.1 Dynamic model of shallow underground soil temperature distribution 14

2.4.2 Solve the shallow formation soil temperature distribution in application of Fourier Law 16

2.5 Characteristic analysis of formation temperature wave 18

2.5.1 Formation soil temperature attenuating property 18

2.5.2 Temperature wave delay 20

2.5.3 Calculation of original formation soil temperature at the same time 21

Chapter 3 Heat Transfer between Soil and Air in Tunnel 23

3.1 Analysis of tunnel wall heat conduction process 23

3.2 Introduction of coupling problem 25

3.3 Selection of turbulence model 29

3.4 Processing of near-wall region 30

3.5 Mathematical description of the model 31

3.6 Mesh generation of mathematical model 32

3.7 Definition of boundary conditions in GAMBIT and FLUENT 33

3.7.1 Settings for boundary conditions 33

3.7.2 Preliminary defining of the types of boundary conditions in the GAMBIT 36

3.7.3 Further defining the conditions of the mathematical model in FLUENT 36

Chapter 4 Process Analysis of Air through Tunnel in Summer 40

4.1 Determination of different parameters in simulation computation 40

4.1.1 Air outdoor meteorological parameters 40

4.1.2 Formation temperature 41

4.1.3 Tunnel masonry material 43

4.1.4 Convection heat transfer coefficient 43

4.2 Analog computation and analysis of all factors for air cooling through tunnel 44

4.2.1 Simulation computation and analysis for air cooling factors through tunnel under 44

4.2.2 Dynamic simulation computation and analysis of air temperature drop through tunnel 52

4.3 Tunnel cooling efficiency 66

4.3.1 Effect of tunnel length on tunnel cooling efficiency 67

4.3.2 Effect of tunnel buried depth on tunnel cooling efficiency 68

4.3.3 Effect of tunnel wind speed on tunnel cooling efficiency 70

4.3.4 Effect of tunnel structure size on tunnel cooling efficiency 71

4.3.5 Effect of different ventilation time on tunnel cooling efficiency 72

Chapter 5 State Change of Air through Tunnel in Winter 75

5.1 Introduction of mathematical model 75

5.1.1 Model zone setting 76

5.1.2 Air outdoor meteorological parameters 76

5.1.3 Formation temperature 78

5.1.4 Soil physical property parameters 79

5.1.5 Determination of convection heat transfer coefficient 80

5.2 Simulation results 81

5.3 Analog computation and analysis of all factors for air heating through tunnel 84

5.3.1 Simulation computation and analysis for air heating factors through tunnel under steady state 84

5.3.2 Dynamic simulation computation and analysis of air temperature drop through tunnel 94

5.4 Tunnel heating efficiency 105

5.4.1 Effect of tunnel length on tunnel heating efficiency 106

5.4.2 Effect of tunnel buried depth on tunnel heating efficiency 108

5.4.3 Effect of tunnel wind speed on tunnel heating efficiency 109

5.4.4 Effect of tunnel structure size on heating efficiency 110

Chapter 6 Air through Tunnel Experimental Study 112

6.1 Experimental object description 112

6.2 Experimental methods and apparatus 114

6.2.1 Conditions preparation before the experiment 114

6.2.2 Experimental methods and procedures 114

6.2.3 Experimental apparatus 116

6.3 Experimental error analysis 118

6.3.1 Experimental apparatus error analysis 119

6.3.2 Error analysis of experimental measurement 119

6.4 Experimental procedures and data processing 121

6.4.1 The experimental procedures and results of tunnel parameters measurement under original state 121

6.4.2 Experimental procedures and results of each measured parameters inside the tunnel under ventilation state 125

6.5 Comparative analysis of experimental results and theoretical calculation 131

Chapter 7 ASHP 136

7.1 Heat pump and its type 136

7.2 Air source heat pump(ASHP) 137

7.3 The characteristics of ASHP 140

7.4 The applicability of ASHP 143

Chapter 8 Air Source Heat Pump Based on Air through Tunnel 150

8.1 Air source heat pump based on air through tunnel 150

8.2 Introduction of ASHP experimental system based on air through tunnel 152

8.2.1 Work principle of ASHP system based on ATT 152

8.2.2 Experiment facility and test method 153

8.3 Experiment data and analysis of ASHP based on ATT 157

8.4 Frostless ASHP based on ATT 162

8.5 Application analysis of ASHP based on ATT 164

8.6 Innovation analysis of ASHP based on ATT 168

Annex 173

Annex 1 Surface Temperature,Temperature Wave Amplitude,and Maximum Depth of Frozen Ground of Main Cities in China 173

Annex 2 Calculating Parameter for Building Material Thermo Physical Characteristic 181

精品推荐