图书介绍

几何三部曲 第1卷 几何的公理化方法 英文版pdf电子书版本下载

几何三部曲  第1卷  几何的公理化方法  英文版
  • (比)F.博斯克斯著 著
  • 出版社: 世界图书出版公司
  • ISBN:7519220737
  • 出版时间:2016
  • 标注页数:403页
  • 文件大小:50MB
  • 文件页数:418页
  • 主题词:几何学-研究-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

几何三部曲 第1卷 几何的公理化方法 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Pre-Hellenic Antiquity 1

1.1 Prehistory 1

1.2 Egypt 3

1.3 Mesopotamia 5

1.4 Problems 6

1.5 Exercises 7

2 Some Pioneers of Greek Geometry 9

2.1 Thales of Miletus 10

2.2 Pythagoras and the Golden Ratio 13

2.3 Trisecting the Angle 16

2.4 Squaring the Circle 18

2.5 Duplicating the Cube 23

2.6 Incommensurable Magnitudes 29

2.7 The Method ofExhaustion 34

2.8 On the Continuity of Space 38

2.9 Problems 40

2.10 Exercises 41

3 Euclid's Elements 43

3.1 Book 1:Straight Lines 44

3.2 Book 2:Geometric Algebra 64

3.3 Book 3:Circles 68

3.4 Book 4:Polygons 74

3.5 Book 5:Ratios 77

3.6 Book 6:Similarities 78

3.7 Book 7:Divisibility in Arithmetic 85

3.8 Book 8:Geometric Progressions 90

3.9 Book 9:More on Numbers 90

3.10 Book 10:Incommensurable Magnitudes 91

3.11 Book 11:Solid Geometry 92

3.12 Book 12:The Method of Exhaustion 100

3.13 Book 13:Regular Polyhedrons 106

3.14 Problems 109

3.15 Exercises 110

4 Some Masters of Greek Geometry 111

4.1 Archimedes on the Circle 112

4.2 Archimedes on the Numberπ 113

4.3 Archimedes on the Sphere 120

4.4 Archimedes on the Parabola 124

4.5 Archimedes on the Spiral 127

4.6 Apollonius on Conical Sections 130

4.7 Apollonius on Conjugate Directions 135

4.8 Apollonius on Tangents 139

4.9 Apollonius on Poles and Polar Lines 143

4.10 Apollonius on Foci 146

4.11 Heron on the Triangle 149

4.12 Menelaus on Trigonometry 151

4.13 Ptolemy on Trigonometry 154

4.14 Pappus on Anharmonic Ratios 157

4.15 Problems 162

4.16 Exercises 164

5 Post-Hellenic Euclidean Geometry 167

5.1 Still Chasing the Number π 168

5.2 The Medians of a Triangle 170

5.3 The Altitudes of a Triangle 172

5.4 Ceva's Theorem 172

5.5 The Trisectrices of a Triangle 174

5.6 Another Look at the Foci ofConics 177

5.7 Inversions in the Plane 180

5.8 Inversions in Solid Space 184

5.9 The Stereographic Projection 186

5.10 Let us Burn our Rulers! 189

5.11 Problems 195

5.12 Exercises 195

6 Projective Geometry 197

6.1 Perspective Representation 198

6.2 Projective Versus Euclidean 202

6.3 Anharmonic Ratio 205

6.4 The Desargues and the Pappus Theorems 208

6.5 Axiomatic Projective Geometry 210

6.6 Arguesian and Pappian Planes 214

6.7 The Projective Plane over a Skew Field 219

6.8 The Hilbert Theorems 222

6.9 Problems 240

6.10 Exercises 241

7 Non-Euclidean Geometry 243

7.1 Chasing Euclid's Fifth Postulate 245

7.2 T he Saccheri Quadrilaterals 251

7.3 The Angles of a Triangle 259

7.4 The Limit Parallels 264

7.5 The Area of a Triangle 273

7.6 The Beltrami-K1ein and Poincaré Disks 280

7.7 Problems 302

7.8 Exercises 303

8 Hilbert's Axiomatization of the Plane 305

8.1 The Axioms of Incidence 306

8.2 The Axioms of Order 307

8.3 The Axioms of Congruence 319

8.4 The Axiom of Continuity 335

8.5 The Axioms of Parallelism 351

8.6 Problems 353

8.7 Exercises 353

Appendix A Constructibility 355

A.1 The Minimal Polynomial 355

A.2 The Eisenstein Criterion 358

A.3 Ruler and Compass Constructibility 360

A.4 Constructibility Versus Field Theory 363

Appendix B The Classical Problems 369

B.1 Duplicating the Cube 369

B.2 Trisecting the Angle 369

B.3 Squaring the Circle 371

Appendix C Regular Polygons 379

C.1 What the Greek Geometers Knew 379

C.2 The Problem in Algebraic Terms 380

C.3 Fermat Primes 382

C.4 Elements of Modular Arithmetic 384

C.5 A Flavour of Galois Theory 387

C.6 The Gauss-Wantzel Theorem 390

Referencesand Further Reading 395

Index 397

精品推荐