图书介绍

拓扑流形引论pdf电子书版本下载

拓扑流形引论
  • John M.Lee著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7506259591
  • 出版时间:2003
  • 标注页数:385页
  • 文件大小:59MB
  • 文件页数:405页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

拓扑流形引论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction 1

What Are Manifolds? 1

Why Study Manifolds? 4

2 Topological Spaces 17

Topologies 17

Bases 27

Manifolds 30

Problems 36

3 New Spaces from Old 39

Subspaces 39

Product Spaces 48

Quotient Spaces 52

Group Actions 58

Problems 62

4 Connectedness and Compactness 65

Connectedness 65

Compactness 73

Locally Compact Hausdorff Spaces 81

Problems 88

5 Simplicial Complexes 91

Euclidean Simplicial Complexes 92

Abstract Simplicial Complexes 96

Triangulation Theorems 102

Orientations 105

Combinatorial Invariants 109

Problems 114

6 Curves and Surfaces 117

Classification of Curves 118

Surfaces 119

Connected Sums 126

Polygonal Presentations of Surfaces 129

Classification of Surface Presentations 137

Combinatorial Invariants 142

Problems 146

7 Homotopy and the Fundamental Group 147

Homotopy 148

The Fundamental Group 150

Homomorphisms Induced by Continuous Maps 158

Homotopy Equivalence 161

Higher Homotopy Groups 169

Categories and Functors 170

Problems 176

8 Circles and Spheres 179

The Fundamental Group of the Circle 180

Proofs of the Lifting Lemmas 183

Fundamental Groups of Spheres 187

Fundamental Groups of Product Spaces 188

Fundamental Groups of Manifolds 189

Problems 191

9 Some Group Theory 193

Free Products 193

Free Groups 199

Presentations of Groups 201

Free Abelian Groups 203

Problems 208

10 The Seifert-Van Kampen Theorem 209

Statement of the Theorem 210

Applications 212

Proof of the Theorem 221

Distinguishing Manifolds 227

Problems 230

11 Covering Spaces 233

Definitions and Basic Properties 234

Covering Maps and the Fundamental Group 239

The Covering Group 247

Problems 253

12 Classification of Coverings 257

Covering Homomorphisms 258

The Universal Covering Space 261

Proper Group Actions 266

The Classification Theorem 283

Problems 289

13 Homology 291

Singular Homology Groups 292

Homotopy Invariance 300

Homology and the Fundamental Group 304

The Mayer-Vietoris Theorem 308

Applications 318

The Homology of a Simplicial Complex 323

Cohomology 329

Problems 334

Appendix:Review of Prerequisites 337

Set Theory 337

Metric Spaces 347

Group Theory 352

References 359

Index 362

精品推荐