图书介绍

复变函数引论pdf电子书版本下载

复变函数引论
  • 曹丽霞,罗英语,仲光苹主编;高伟,田淑杰副主编 著
  • 出版社: 哈尔滨:哈尔滨工程大学出版社
  • ISBN:9787566106469
  • 出版时间:2013
  • 标注页数:299页
  • 文件大小:34MB
  • 文件页数:309页
  • 主题词:复变函数-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

复变函数引论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 Complex Numbers 1

1.1 Complex Numbers 1

Exercises for 1.1 5

Answers or Hints for Exercises 1.1 6

1.2 Moduli and Conjugates 6

Exercises for 1.2 9

Answers or Hints for Exercises 1.2 10

1.3 Exponential Form 10

Exercises for 1.3 13

Answers or Hints for Exercises 1.3 14

1.4 Powers and Roots 14

Exercises for 1.4 17

Answers or Hints for Exercises 1.4 19

1.5 Geometrically Application of Complex Numbers 20

Exercises for 1.5 23

1.6 Plane Topology 23

Exercises for 1.6 25

Answers or Hints for Exercises 1.6 26

1.7 Curves 27

Chapter 2 Analytic Functions 30

2.1 Complex-valued Functions of a Complex Variable 30

Exercises for 2.1 35

Answers or Hints for Exercises 2.1 37

2.2 Limits and Continuity 37

Exercises for 2.2 43

Answers or Hints for Exercises 2.2 44

2.3 The Extended Plane and Infinity 44

Exercises for 2.3 47

Answers or Hints for Exercises 2.3 47

2.4 Complex Differentiability 48

Exercises for 2.4 54

Answers or Hints for Exercises 2.4 56

2.5 Analytic Functions 57

Exercises for 2.5 60

Answers or Hints for Exercises 2.5 61

2.6 Laplace’ s Equation and Harmonic Conjugates 62

Exercises for 2.6 66

Answers or Hints for Exercises 2.6 67

Chapter 3 Elementary Functions 69

3.1 The Exponential Functions 69

Exercises for 3.1 71

Answers or Hints for Exercises 3.1 72

3.2 Linear Fractional Transformations 73

Exercises for 3.2 81

Answers or Hints for Exercises 3.2 82

3.3 Trigonometric Functions 83

Exercises for 3.3 85

Answers or Hints for Exercises 3.3 87

3.4 The Radical Functions 87

Exercises for 3.4 91

Answers or Hints for Exercises 3.4 92

3.5 The Logarithm Function 92

Exercises for 3.5 95

Answers or Hints for Exercises 3.5 97

3.6 Complex Exponents 97

Exercises for 3.6 101

Answers or Hints for Exercises 3.6 102

3.7 Inverse Trigonometric and Hyperbolic Functions 103

Exercises for 3.7 104

Answers or Hints for Exercises 3.7 105

Chapter 4 Complex Integrals 107

4.1 Contour Integrals and Its Simple Properties 107

Exercise for 4.1 114

Answers or Hints for Exercises 4.1 117

4.2 Antiderivatives 118

Exercises for 4.2 124

Answers or Hints for Exercises 4.2 126

4.3 Cauchy Theorem 126

Exercises for 4.3 134

Answers or Hints for Exercises 4.3 135

4.4 Cauchy Integral Formula 136

Exercises for 4.4 146

Answers or Hints for Exercises 4.4 148

4.5 Maximum Modulus Principle 149

Exercises for 4.5 153

Answers or Hints for Exercises 4.5 153

Chapter 5 Power Series 155

5.1 Complex Sequences, Series and Their Basic Properties 155

Exercises for 5.1 158

Answers or Hints for Exercises 5.1 160

5.2 Series of Complex Functions and Its Basic Properties 160

Exercises for 5.2 165

Answers or Hints for Exercises 5.2 166

5.3 Power Series 167

Exercises for 5.3 172

Answers or Hints for Exercises 5.3 173

5.4 Taylor Series for Analytic Functions 173

Exercises for 5.4 180

Answers or Hints for Exercises 5.4 183

5.5 Manipulation of Power Series 184

Exercises for 5.5 187

Answers or Hints for Exercises 5.5 188

5.6 The Zeros of Analytic Functions 189

Exercises for 5.6 194

Answers or Hints for Exercises 5.6 196

Chapter 6 Laurent Series and Isolated Singularities 197

6.1 Laurent Decomposition 197

Exercises for 6.1 202

Answers or Hints for Exercises 6.1 205

6.2 Isolated Singular Point and Its Types 209

Exercises for 6.2 221

Answers or Hints for Exercises 6.2 223

6.3 Isolated Singularity at Infinity 224

Exercises for 6.3 228

Answers or Hints for Exercises 6.3 228

6.4 Entire Functions and Meromorphic Functions 230

Exercises for 6.4 233

Answers or Hints for Exercises 6.4 234

Chapter 7 Residue 236

7.1 Residue and Cauchy Residue Theorem 236

Exercises for 7.1 244

Answers or Hints for Exercises 7.1 246

7.2 The Argument Principle,Rouche’s Theorem 247

Exercises for 7.2 254

Answers or Hints for Exercises 7.2 255

Chapter 8 Evaluation of Real Integrals 257

8.1 Integrals of Trigonometric Functions 257

Exercises for 8.1 260

Answers or Hints for Exercises 8.1 262

8.2 Rational Functions over the Real Line 263

Exercises for 8.2 268

Answers or Hints for Exercises 8.2 270

8.3 Rational and Trigonometric Functions over the Real Line, 272

Exercises for 8.3 275

Answers or Hints for Exercises 8.3 276

8.4 Principal Value Integrals,Indentation Round a Singularity 277

Exercises for 8.4 288

Answers or Hints for Exercises 8.4 288

8.5 Integrals with Branch Points 289

Exercises for 8.5 297

Answers or Hints for Exercises 8.5 297

参考文献 299

精品推荐