图书介绍

数值分析pdf电子书版本下载

数值分析
  • 袁东锦编著 著
  • 出版社: 南京:东南大学出版社
  • ISBN:7810898744
  • 出版时间:2005
  • 标注页数:269页
  • 文件大小:7MB
  • 文件页数:278页
  • 主题词:数值计算-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

数值分析PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Preliminaries 1

1.1 Review of Calculus 1

Exercise 7

1.2 Round-Off Errors and Computer Arithmetic 7

Exercise 17

2 The Solution of Nonlinear Equation f(x)=0 19

2.1 The Bisection Algorithm 20

Exercise 25

2.2 Fixed-Point Iteration 25

Exercise 33

2.3 The Newton-Raphson Method 34

Exercise 42

2.4 Error Analysis for Iterative Methods and Acceleration Techniques 42

Exercise 51

3 Interpolation and Polynomial Approximation 52

3.1 Interpolation and the Lagrange Polynomial 53

Exercise 61

3.2 Divided Differences 62

Exercise 70

3.3 Hermite Interpolation 72

Exercise 78

3.4 Cubic Spline Interpolation 79

4 Numerical Integration 88

4.1 Introduction to Quadrature 89

Exercise 97

4.2 Composite Trapezoidal and Simpson's Rule 98

Exercise 108

4.3 Recursive Rules and Romberg Integration 109

Exercise 120

5 Direct Methods for Solving Linear Systems 122

5.1 Linear Systems of Equations 122

Exercise 130

5.2 Pivoting Strategies 130

Exercise 137

5.3 Matrix Factorization 137

Exercise 145

5.4 Special Types of Matrices 145

Exercise 157

6 Iterative Techniques in Matrix Algebra 158

6.1 Norms of Vectors and Matrices 158

Exercise 166

6.2 Eigenvalues and Eigenvectors 167

Exercise 171

6.3 Iterative Techniques for Solving Linear Systems 172

Exercise 184

6.4 Error Estimates and Iterative Refinement 185

Exercise 193

7 Approximating Eigenvalues 194

7.1 Linear Algebra and Eigenvalues 194

Exercise 200

7.2 The Power Method 201

Exercise 214

7.3 Householder's Method 215

Exercise 222

7.4 The QR Algorithm 223

Exercise 233

8 Initial-Value Problems for Ordinary Differential Equations 235

8.1 The Elementary Theory of Initial-Value Problems 235

Exercise 240

8.2 Euler's Method 240

Exercise 247

8.3 Higher-Order Taylor Methods 248

Exercise 252

8.4 Runge-Kutta Methods 253

Exercise 260

8.5 Error Control and the Runge-Kutta-Fehlberg Method 261

Exercise 267

References 269

精品推荐