图书介绍
实分析和概率论 第2版pdf电子书版本下载

- (美)达德利(Dudley,R.M.)著 著
- 出版社: 北京:机械工业出版社
- ISBN:7111193482
- 出版时间:2006
- 标注页数:555页
- 文件大小:104MB
- 文件页数:565页
- 主题词:实分析-英文;概率论-英文
PDF下载
下载说明
实分析和概率论 第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Foundations;Set Theory 1
1.1 Definitions for Set Theory and the Real Number System 1
1.2 Relations and Orderings 9
1.3 Transfinite Induction and Recursion 12
1.4 Cardinality 16
1.5 The Axiom of Choice and Its Equivalents 18
2 General Topology 24
2.1 Topologies,Metrics,and Continuity 24
2.2 Compactness and Product Topologies 34
2.3 Complete and Compact Metric Spaces 44
2.4 Some Metrics for Function Spaces 48
2.5 Completion and Completeness of Metric Spaces 58
2.6 Extension of Continuous Functions 63
2.7 Uniformities and Uniform Spaces 67
2.8 Compactification 71
3 Measures 85
3.1 Introduction to Measures 85
3.2 Semirings and Rings 94
3.3 Completion of Measures 101
3.4 Lebesgue Measure and Nonmeasurable Sets 105
3.5 Atomic and Nonatomic Measures 109
4 Integration 114
4.1 Simple Functions 114
4.2 Measurability 123
4.3 Convergence Theorems for Integrals 130
4.4 Product Measures 134
4.5 Daniell-Stone Integrals 142
5 Lp Spaces;Introduction to Functional Analysis 152
5.1 Inequalities for Integrals 152
5.2 Norms and Completeness of Lp 158
5.3 Hilbert Spaces 160
5.4Orthonormal Sets and Bases 165
5.5 LinearForms on Hilbert Spaces,Inclusions of Lp Spaces,and Relations Between Two Measures 173
5.6 Signed Measures 178
6 Convex Sets and Duality of Normed Spaces 188
6.1 Lipschitz,Continuous,and Bounded Functionals 188
6.2 Convex Sets and Their Separation 195
6.3 Convex Functions 203
6.4 Duality of Lp Spaces 208
6.5 Uniform Boundedness and Closed Graphs 211
6.6 The Brunn-Minkowski Inequality 215
7 Measure,Topology,and Differentiation 222
7.1 Baire and Borel σ-Algebras and Regularity of Measures 222
7.2 Lebesgue's Differentiation Theorems 228
7.3 The Regularity Extension 235
7.4 The Dual of C(K)and Fourier Series 239
7.5 Almost Uniform Convergence and Lusin's Theorem 243
8 Introduction to Probability Theory 250
8.1 Basic Definitions 251
8.2 Infinite Products of Probability Spaces 255
8.3 Laws of Large Numbers 260
8.4 Ergodic Theorems 267
9 Convergence of Laws and Central Limit Theorems 282
9.1 Distribution Functions and Densities 282
9.2 Convergence of Random Variables 287
9.3 Convergence of Laws 291
9.4 Characteristic Functions 298
9.5 Uniqueness of Characteristic Functions and a Central Limit Theorem 303
9.6 Triangular Arrays and Lindeberg's Theorem 315
9.7 Sums of Independent Real Random Variables 320
9.8 The Lévy Continuity Theorem;Infinitely Divisible and Stable Laws 325
10 Conditional Expectations and Martingales 336
10.1 Conditional Expectations 336
10.2 Regular Conditional Probabilities and Jensen's Inequality 341
10.3 Martingales 353
10.4 Optional Stopping and Uniform Integrability 358
10.5 Convergence of Martingales and Submartingales 364
10.6 Reversed Martingales and Submartingales 370
10.7 Subadditive and Superadditive Ergodic Theorems 374
11 Convergence of Laws on Separable Metric Spaces 385
11.1 Laws and Their Convergence 385
11.2 Lipschitz Functions 390
11.3 Metrics for Convergence of Laws 393
11.4 Convergence of Empirical Measures 399
11.5 Tightness and Uniform Tightness 402
11.6 Strassen's Theorem:Nearby Variables with Nearby Laws 406
11.7 A Uniformity for Laws and Almost Surely Converging Realizations of Converging Laws 413
11.8 Kantorovich-Rubinstein Theorems 420
11.9 U-Statistics 426
12 Stochastic Processes 439
12.1 Existence of Processes and Brownian Motion 439
12.2 The Strong Markov Property of Brownian Motion 450
12.3 Reflection Principles,The Brownian Bridge,and Laws of Suprema 459
12.4 Laws of Brownian Motion at Markov Times:Skorohod Imbedding 469
12.5 Laws of the Iterated Logarithm 476
13 Measurability:Borel Isomorphism and Analytic Sets 487
13.1 Borel Isomorphism 487
13.2 Analytic Sets 493
Appendix A Axiomatic Set Theory 503
A.1 Mathematical Logic 503
A.2 Axioms for Set Theory 505
A.3 Ordinals and Cardinals 510
A.4 From Sets to Numbers 515
Appendix B Complex Numbers,Vector Spaces,and Taylor's Theorem with Remainder 521
Appendix C The Problem of Measure 526
Appendix D Rearranging Sums of Nonnegative Terms 528
Appendix E Pathologies of Compact Nonmetric Spaces 530
Author Index 541
Subject Index 546
Notation Index 554