图书介绍

从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式pdf电子书版本下载

从求解多项式方程到阿贝尔不可能性定理  细说五次方程无求根公式
  • 冯承天著 著
  • 出版社: 上海:华东师范大学出版社
  • ISBN:9787567525313
  • 出版时间:2014
  • 标注页数:124页
  • 文件大小:11MB
  • 文件页数:136页
  • 主题词:高次方程-求解

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一部分 多项式方程的求解与数系的扩张 3

第一章 多项式方程的求解和数系的扩张 3

1.1 从自然数到有理数 3

1.2 实数和复数 3

1.3 代数学基本定理 4

1.4 1的n次方根 5

1.5 纯方程的解 6

1.6 复数系的运算性质和法则 6

第二章 二次、三次、四次方程的求解 8

2.1 n次方程的简化 8

2.2 二次方程的求解 8

2.3 三次方程的求解 10

2.4 卡丹公式与复数 12

2.5 四次方程的求解 13

2.6 一般五次方程有公式解吗? 15

第二部分 整数的一些基本概念、定理与理论 21

第三章 算术基本定理 21

3.1 正整数的可除定理 21

3.2 素数和合数 21

3.3 算术基本定理 22

第四章 欧几里得算法 25

4.1 最大公因子 25

4.2 欧几里得算法 25

4.3 贝祖等式 26

第三部分 数域、扩域与代数扩域的一些基本理论 31

第五章 数域的概念 31

5.1 数域的定义 31

5.2 子域和扩域 32

第六章 代数添加和扩域 33

6.1 添加与扩域 33

6.2 代数添加时的扩域结构 34

6.3 添加2个代数元的情况 35

第四部分 多项式的一些基本概念、定理与理论 39

第七章 可约和不可约多项式 39

7.1 数系上的多项式 39

7.2 多项式的可约和不可约 40

7.3 Z上和Q上的多项式的可约性问题 41

7.4 高斯引理 41

7.5 艾森斯坦不可约判据 42

第八章 多项式的整除理论 45

8.1 多项式的整除性 45

8.2 多项式的可除定理 45

8.3 剩余定理 47

第九章 多项式的最大公因式 48

9.1 公因式和最大公因式 48

9.2 多项式的欧几里得算法 48

9.3 多项式的贝祖等式 50

9.4 多项式的互素 51

9.5 多项式的唯一因式分解定理 52

第十章 多项式的导数和多项式的根 53

10.1 函数的变化率和导数 53

10.2 形式导数 54

10.3 多项式的根 55

10.4 重根问题 56

10.5 根与系数的关系 57

第十一章 实系数多项式的根 59

11.1 实系数多项式的实根和复根 59

11.2 实数序列的变号次数 59

11.3 没有重根的实系数多项式的斯图姆组 60

11.4 斯图姆定理 61

第十二章 多元多项式 64

12.1 多元多项式和字典式排列法 64

12.2 对称多项式和初等对称多项式 65

12.3 对称多项式基本定理 65

第五部分 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 73

第十三章 阿贝尔引理与阿贝尔不可约定理 73

13.1 x2—c? N[x]在N上可约吗? 73

13.2 xn—c在N上的可约性问题 74

13.3 阿贝尔引理 74

13.4 不可约多项式的基本定理——阿贝尔不可约性定理 76

第十四章 单代数扩域的结构,纯扩域和复共轭封闭域 78

14.1 不可约多项式的根给出的单代数扩域 78

14.2 单代数扩域的结构定理 79

14.3 n型纯扩域 80

14.4 复共轭封闭域 81

第六部分 多项式方程的根式求解、克罗内克定理与鲁菲尼—阿贝尔定理 87

第十五章 关于F上不可约多项式在F的扩域上可约的两个定理 87

15.1 关于F上不可约多项式在F的扩域上可约的第一个定理 87

15.2 关于F上不可约多项式在F的扩域上可约的第二个定理 89

第十六章 多项式方程的根式求解 91

16.1 多项式方程根式可解的含意 91

16.2 多项式方程根式可解的精确定义和对讨论情况的一些简化 92

16.3 f(x)根式扩链的加细 93

16.4 f(x)达到可约的两种情况 95

16.5 证明“阿贝尔不可能性定理”的思路 96

16.6 f(x)可约给出的一些结果 96

16.7 多项式?(x, λv)的两个性质 97

16.8 f (x)在Em上分解为线性因式的乘积 99

16.9 f (x)的根在Em中的表示 100

16.10 对情况A的讨论 101

16.11 对情况B的讨论 102

16.12 克罗内克定理和鲁菲尼—阿贝尔定理 104

16.13 尾声 106

附录 109

附录1关于代数学基本定理的定性说明 111

附录2复数的表示及运算 113

附录3韦达用三角函数解简化的三次方程的方法 116

附录4斯图姆定理的证明 118

参考文献 122

后记 124

精品推荐