图书介绍

Graduate Texts in Mathematics Probabilitypdf电子书版本下载

Graduate Texts in Mathematics Probability
  • 出版社:
  • ISBN:0387908986
  • 出版时间:未知
  • 标注页数:577页
  • 文件大小:16MB
  • 文件页数:589页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Graduate Texts in Mathematics ProbabilityPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction 1

CHAPTER Ⅰ Elementary Probability Theory 5

1.Probabilistic Model of an Experiment with a Finite Number of Outcomes 5

2.Some Classical Models and Distributions 17

3.Conditional Probability.Independence 23

4.Random Variables and Their Properties 32

5.The Bernoulli Scheme.Ⅰ.The Law of Large Numbers 45

6.The Bernoulli Scheme.Ⅱ.Limit Theorems (Local,De Moivre-Laplace, Poisson) 55

7.Estimating the Probability of Success in the Bernoulli Scheme 68

8.Conditional Probabilities and Mathematical Expectations withRespect to Decompositions 74

9.Random Walk.I.Probabilities of Ruin and Mean Duration inCoin Tossing 81

10.Random Walk.Ⅱ.Reflection Principle.Arcsine Law 92

11.Martingales.Some Applications to the Random Walk 101

12.Markov Chains.Ergodic Theorem.Strong Markov Property 108

CHAPTER Ⅱ Mathematical Foundations of Probability Theory 129

1.Probabilistic Model for an Experiment with Infinitely ManyOutcomes.Kolmogorov’s Axioms 129

2.Algebras and σ-algebras.Measurable Spaces 137

3.Methods of Introducing Probability Measures on Measurable Spaces 149

4.Random Variables.Ⅰ 164

5.Random Elements 174

6.Lebesgue Integral Expectation 178

7.Conditional Probabilities and Conditional Expectations with Respect to a σ-Algebra 210

8.Random Variables.Ⅱ 232

9.Construction of a Process with Given Finite-Dimensional Distribution 243

10.Various Kinds of Convergence of Sequences of Random Variables 250

11.The Hilbert Space of Random Variables with Finite Second Moment 260

12.Characteristic Functions 272

13.Gaussian Systems 295

CHAPTER Ⅲ Convergence of Probability Measures.Central Limit Theorem 306

1.Weak Convergence of Probability Measures and Distributions 306

2.Relative Compactness and Tightness of Families of Probability Distributions 314

3.Proofs of Limit Theorems by the Method of Characteristic Functions 318

4.Central Limit Theorem for Sums of Independent Random Variables 326

5.Infinitely Divisible and Stable Distributions 335

6.Rapidity of Convergence in the Central Limit Theorem 342

7.Rapidity of Convergence in Poisson’s Theorem 345

CHAPTER Ⅳ Sequences and Sums of Independent Random Variables 354

1.Zero-or-One Laws 354

2.Convergence of Series 359

3.Strong Law of Large Numbers 363

4.Law of the Iterated Logarithm 370

CHAPTER Ⅴ Stationary (Strict Sense) Random Sequences and Ergodic Theory 376

1.Stationary (Strict Sense) Random Sequences.Measure-Preserving Transformations 376

2.Ergodicity and Mixing 379

3.Ergodic Theorems 381

CHAPTER Ⅵ Stationary (Wide Sense) Random Sequences.L2 Theory 387

1.Spectral Representation of the Covariance Function 387

2.Orthogonal Stochastic Measures and Stochastic Integrals 395

3.Spectral Representation of Stationary (Wide Sense) Sequences 401

4.Statistical Estimation of the Covariance Function and the Spectral Density 412

5.Wold’s Expansion 418

6.Extrapolation, Interpolation and Filtering 425

7.The Kalman-Bucy Filter and Its Generalizations 436

CHAPTER Ⅶ Sequences of Random Variables that Form Martingales 446

1.Definitions of Martingales and Related Concepts 446

2.Preservation of the Martingale Property Under Time Change at a Random Time 456

3.Fundamental Inequalities 464

4.General Theorems on the Convergence of Submartingales and Martingales 476

5.Sets of Convergence of Submartingales and Martingales 483

6.Absolute Continuity and Singularity of Probability Distributions 492

7.Asymptotics of the Probability of the Outcome of a Random Walk with Curvilinear Boundary 504

8.Central Limit Theorem for Sums of Dependent Random Variables 509

CHAPTER Ⅷ Sequences of Random Variables that Form Markov Chains 523

1.Definitions and Basic Properties 523

2.Classification of the States of a Markov Chain in Terms of Arithmetic Properties of the Transition Probabilities p(n)ij 528

3.Classification of the States of a Markov Chain in Terms of Asymptotic Properties of the Probabilities p(n)ij 532

4.On the Existence of Limits and of Stationary Distributions 541

5.Examples 546

Historical and Bibliographical Notes 555

References 561

Index of Symbols 565

Index 569

精品推荐