图书介绍

Performance and reliability analysis of computer systems an example-based approach using the SHARPEpdf电子书版本下载

Performance and reliability analysis of computer systems an example-based approach using the SHARPE
  • Robin A.Sahner ; Kishor S. Trivedi ; Antonio Puliafito 著
  • 出版社: Kluwer Academic Publishers
  • ISBN:0792396502
  • 出版时间:1996
  • 标注页数:404页
  • 文件大小:102MB
  • 文件页数:419页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Performance and reliability analysis of computer systems an example-based approach using the SHARPEPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part Ⅰ MODELING THEORY 1

1 DISTRIBUTION FUNCTIONS 5

1.1 Basic Definitions 5

1.2 The Exponential Distribution 9

1.3 Operations on Random Variables 10

1.4 Exponential Polynomial Distributions 17

1.5 Mixture Distributions 18

1.6 EP and Other Classes of Distributions 21

1.7 Approximating non-EP Distributions with EP Distributions 22

1.8 Operations on Exponential Polynomials 23

2 RELIABILITY AND AVAILABILITY MODELS 27

2.1 Reliability 27

2.2 Availability 30

2.3 Series-Parallel Reliability Block Diagrams 35

2.4 Fault Trees 39

2.5 Reliability Graphs 42

2.6 Analysis of Network Reliability Models 45

3 SERIES-PARALLEL ACYCLIC DIRECTED GRAPHS 47

3.1 A Simple Task Graph Example 48

3.2 Running Example: Performance from a Program's Point of View 49

3.3 Definition of a Series-Parallel Acyclic Directed Graph Model 50

3.4 Series-Parallel Acyclic Directed Graph Analysis 53

4 MARKOV MODELS 55

4.1 Stochastic Processes 55

4.2 Markov Chains 57

4.3 Basic Equations 58

4.4 Classification of States and Chains 61

4.5 Examples of Markov Chain Analysis 63

4.6 Steady-state Solution Techniques 72

4.7 Transient Analysis Methods 73

4.8 Examples 80

5 PRODUCT-FORM QUEUEING NETWORKS 85

5.1 Queueing Terminology 85

5.2 Queueing Network Analysis 89

5.3 Examples 100

6 PERFORMABILITY MODELS 103

6.1 Introduction 104

6.2 Degradable Systems 106

6.3 Largeness and stiffness: the decomposition approach 108

6.4 The Markov Reward Model 109

6.5 Measures of interest 110

6.6 Reward Assignment and Reward Computation 116

7 STOCHASTIC PETRI NET MODELS 119

7.1 Introduction to Petri Net Models 120

7.2 Petri Net Model Definitions 123

7.3 Petri Net Extensions 126

7.4 SPN and GSPN Analysis 133

7.5 GSPN EXAMPLES 137

7.6 Non-Markovian SPN Model Extensions 141

8 SEMI-MARKOV CHAINS 143

8.1 Describing Semi-Markov chains 143

8.2 Analysis of Irreducible Semi-Markov Chains 145

8.3 A Semi-Symbolic Analysis for Acyclic Semi-Markov Chains 147

Part Ⅱ MODELING EXAMPLES 151

9 RELIABILITY AND AVAILABILITY MODELING 155

9.1 Modeling with Block Diagrams 155

9.2 Modeling Reliability and Availability with Fault Trees 172

9.3 Modeling With A Reliability Graph 180

9.4 Modeling Using Markov Chains 183

9.5 Ring Network Reliability Models 193

10 PERFORMANCE MODELING 203

10.1 Program Performance Analysis Using Task Graphs 204

10.2 System Performance Analysis 222

11 HIERARCHICAL MODELS 261

11.1 A Non-Series-Parallel Block Diagram 262

11.2 A Non-Series-Parallel Task Precedence Graph 271

11.3 A Task Graph Containing a Cycle 274

11.4 A Queueing Model with Resource Constraints 277

11.5 A Queueing Model with Simultaneous Resource Possession 280

11.6 A Queueing Model with Job Priorities 284

11.7 Parallel Processing of Task Systems with Resource Con-straints 288

11.8 A Queue Subject to Failure and Repair 294

11.9 Modeling Repair Dependence 295

11.10 Intermittent and Near-coincident Faults 301

12 PERFORMABILITY MODELS 313

12.1 An Acyclic Markov Reward Model 313

12.2 An Irreducible Markov Reward Model 318

12.3 A Hierarchical Markov Reward Model 320

12.4 A Multiprocessor Performability Model 324

13 HANDLING ALGORITHMIC AND NUMERICAL LIMITATIONS 329

13.1 Distributions with Very Large Coefficients 330

13.2 A Phase-type Markov Chain 334

13.3 An Irreducible Markov Chain 337

13.4 An Example Where the Order of States Matters 339

Part Ⅲ APPENDICES 343

A SHARPE COMMAND LINE SYNTAX 345

B SHARPE LANGUAGE DESCRIPTION 347

B.1 Conventions 347

B.2 Basic Language Components 347

B.3 Specification of Exponential Polynomial Functions 352

B.4 Specification of Models 354

B.5 Asking for Results 367

B.6 Built-in Functions 371

B.7 Controlling the Analysis Process 375

B.8 Program Constants 377

B.9 Summary of Top-level Input Statements 378

C USING SHARPE INTERACTIVELY 381

D ALGORITHM CHOICES FOR PHASE-TYPE MARKOV CHAINS 387

REFERENCES 389

INDEX 401

精品推荐