图书介绍

An Introduction To Partial Differential Equationspdf电子书版本下载

An Introduction To Partial Differential Equations
  • Yehuda Pinchover and Jacob Rubinstein 著
  • 出版社: Cambridge University Press.
  • ISBN:
  • 出版时间:2005
  • 标注页数:371页
  • 文件大小:125MB
  • 文件页数:381页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

An Introduction To Partial Differential EquationsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction 1

1.1 Preliminaries 1

1.2 Classification 3

1.3 Differential operators and the superposition principle 3

1.4 Differential equations as mathematical models 4

1.5 Associated conditions 17

1.6 Simple examples 20

1.7 Exercises 21

2 First-order equations 23

2.1 Introduction 23

2.2 Quasilinear equations 24

2.3 The method of characteristics 25

2.4 Examples of the characteristics method 30

2.5 The existence and uniqueness theorem 36

2.6 The Lagrange method 39

2.7 Conservation laws and shock waves 41

2.8 The eikonal equation 50

2.9 General nonlinear equations 52

2.10 Exercises 58

3 Second-order linear equations in two indenpendent variables 64

3.1 Introduction 64

3.2 Classification 64

3.3 Canonical form of hyperbolic equations 67

3.4 Canonical form of parabolic equations 69

3.5 Canonical form of elliptic equations 70

3.6 Exercises 73

4 The one-dimensional wave equation 76

4.1 Introduction 76

4.2 Canonical form and general solution 76

4.3 The Cauchy problem and d'Alembert's formula 78

4.4 Domain of dependence and region of influence 82

4.5 The Cauchy problem for the nonhomogeneous wave equation 87

4.6 Exercises 93

5 The method of separation of variables 98

5.1 Introduction 98

5.2 Heat equation: homogeneous boundary condition 99

5.3 Separation of variables for the wave equation 109

5.4 Separation of variables for nonhomogeneous equations 114

5.5 The energy method and uniqueness 116

5.6 Further applications of the heat equation 119

5.7 Exercises 124

6 Sturm-Liouville problems and eigenfunction expansions 130

6.1 Introduction 130

6.2 The Sturm-Liouville problem 133

6.3 Inner product spaces and orthonormal systems 136

6.4 The basic properties of Sturm-Liouville eigenfunctions and eigenvalues 141

6.5 Nonhomogeneous equations 159

6.6 Nonhomogeneous boundary conditions 164

6.7 Exercises 168

7 Elliptic equations 173

7.1 Introduction 173

7.2 Basic properties of elliptic problems 173

7.3 The maximum principle 178

7.4 Applications of the maximum principle 181

7.5 Green's identities 182

7.6 The maximum principle for the heat equation 184

7.7 Separation of variables for elliptic problems 187

7.8 Poisson's formula 201

7.9 Exercises 204

8 Green's functions and integral representations 208

8.1 Introduction 208

8.2 Green's function for Dirichlet problem in the plane 209

8.3 Neumann's function in the plane 219

8.4 The heat kernel 221

8.5 Exercises 223

9 Equations in high dimensions 226

9.1 Introduction 226

9.2 First-order equations 226

9.3 Classification of second-order equations 228

9.4 The wave equation in R2 and R3 234

9.5 The eigenvalue problem for the Laplace equation 242

9.6 Separation of variables for the heat equation 258

9.7 Separation of variables for the wave equation 259

9.8 Separation of variables for the Laplace equation 261

9.9 Schrodinger equation for the hydrogen atom 263

9.10 Musical instruments 266

9.11 Green's functions in higher dimensions 269

9.12 Heat kernel in higher dimensions 275

9.13 Exercises 279

10 Variational methods 282

10.1 Calculus of variations 282

10.2 Function spaces and weak formulation 296

10.3 Exercises 306

11 Numerical methods 309

11.1 Introduction 309

11.2 Finite differences 311

11.3 The heat equation: explicit and implicit schemes, stability, consistency and convergence 312

11.4 Laplace equation 318

11.5 The wave equation 322

11.6 Numerical solutions of large linear algebraic systems 324

11.7 The finite elements method 329

11.8 Exercises 334

12 Solutions of odd-numbered problems 337

A.l Trigonometric formulas 361

A.2 Integration formulas 362

A.3 Elementary ODEs 362

A.4 Differential operators in polar coordinates 363

A.5 Differential operators in spherical coordinates 363

References 364

Index 366

精品推荐