图书介绍
MECHANICS THIRD EDITION COURSE OF THEORETICAL PHYSICS VOLUME 1pdf电子书版本下载

- L.D.LANDAU E.M.LIFSHITZ 著
- 出版社: 世界图书出版公司
- ISBN:
- 出版时间:1999
- 标注页数:170页
- 文件大小:8MB
- 文件页数:196页
- 主题词:
PDF下载
下载说明
MECHANICS THIRD EDITION COURSE OF THEORETICAL PHYSICS VOLUME 1PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ.THE EQUATIONS OF MOTION 1
1.Generalised co-ordinates 1
2.The principle of least action 2
3.Galileo’s relativity principle 4
4.The Lagrangian for a free particle 6
5.The Lagrangian for a system of particles 8
Ⅱ.CONSERVATION LAWS 13
6.Energy 13
7.Momentum 15
8.Centre of mass 16
9.Angular momentum 18
10.Mechanical similarity 22
Ⅲ.INTEGRATION OF THE EQUATIONS OF MOTION 25
11.Motion in one dimension 25
12.Determination of the potential energy from the period of oscillation 27
13.The reduced mass 29
14.Motion in a central field 30
15.Kepler’s problem 35
Ⅳ.COLLISIONS BETWEEN PARTICLES 41
16.Disintegration of particles 41
17.Elastic collisions 44
18.Scattering 48
19.Rutherford’s formula 53
20.Small-angle scattering 55
Ⅴ.SMALL OSCILLATIONS 58
21. Free oscillations in one dimension 58
22.Forced oscillations 61
23.Oscillations of systems with more than one degree of freedom 65
24.Vibrations of molecules 70
25.Damped oscillations 74
26.Forced oscillations under friction 77
27.Parametric resonance 80
28.Anharmonic oscillations 84
29.Resonance in non-linear oscillations 87
30.Motion in a rapidly oscillating field 93
Ⅵ.MOTION OF A RIGID BODY 96
31.Angular velocity 96
32.The inertia tensor 98
33.Angular momentum of a rigid body 105
34.The equations of motion of a rigid body 107
35.Eulerian angles 110
36.Euler’s equations 114
37.The asymmetrical top 116
38.Rigid bodies in contact 122
39.Motion in a non-inertial frame of reference 126
Ⅶ.THE CANONICAL EQUATIONS 131
40.Hamilton’s equations 131
41.The Routhian 133
42.Poisson brackets 135
43.The action as a function of the co-ordinates 138
44.Maupertuis’ principle 140
45.Canonical transformations 143
46.Liouville’s theorem 146
47.The Hamilton-Jacobi equation 147
48.Separation of the variables 149
49.Adiabatic invariants 154
50.Canonical variables 157
51.Accuracy of conservation of the adiabatic invariant 159
52.Conditionally periodic motion 162
Index 167