图书介绍

偏微分方程 第1卷 英文pdf电子书版本下载

偏微分方程  第1卷  英文
  • (德)索维尼著 著
  • 出版社: 世界图书出版公司北京公司
  • ISBN:7510035173
  • 出版时间:2011
  • 标注页数:442页
  • 文件大小:13MB
  • 文件页数:454页
  • 主题词:偏微分方程-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

偏微分方程 第1卷 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ Differentiation and Integration on Manifolds 1

1 The Weierstraв approximation theorem 2

2 Parameter-invariant integrals and differential forms 12

3 The exterior derivative of differential forms 23

4 The Stokes integral theorem for manifolds 30

5 The integral theorems of Gauв and Stokes 39

6 Curvilinear integrals 56

7 The lemma of Poincaré 67

8 Co-derivatives and the Laplace-Beltrami operator 72

9 Some historical notices to chapter Ⅰ 89

Ⅱ Foundations of Functional Analysis 91

1 Daniell's integral with examples 91

2 Extension of Daniell's integral to Lebesgue's integral 96

3 Measurable sets 109

4 Measurable functions 121

5 Riemann's and Lebesgue's integral on rectangles 134

6 Banach and Hilbert spaces 140

7 The Lebesgue spaces Lp(X) 151

8 Bounded linear functionals on Lp(X) and weak convergence 161

9 Some historical notices to chapter Ⅱ 172

Ⅲ Brouwer's Degree of Mapping with Geometric Applications 175

1 The winding number 175

2 The degree of mapping in In 184

3 Geometric existence theorems 193

4 The index of a mapping 195

5 The product theorem 204

6 Theorems of Jordan-Brouwer 210

Ⅳ Generalized Analytic Functions 215

1 The Cauchy-Riemann differential equation 215

2 Holomorphic functions in Cn 219

3 Geometric behavior of holomorphic functions in C 233

4 Isolated singularities and the general residue theorem 242

5 The inhomogeneous Cauchy-Riemann differential equation 255

6 Pseudoholomorphic functions 266

7 Conformal mappings 270

8 Boundary behavior of conformal mappings 285

9 Some historical notices to chapter Ⅳ 295

Ⅴ Potential Theory and Spherical Harmonics 297

1 Poisson's differential equation in Rn 297

2 Poisson's integral formula with applications 310

3 Dirichlet's problem for the Laplace equation in Rn 321

4 Theory of spherical harmonics: Fourier series 334

5 Theory of spherical harmonics in n variables 340

Ⅵ Linear Partial Differential Equations in 1n 355

1 The maximum principle for elliptic differential equations 355

2 Quasilinear elliptic differential equations 365

3 The heat equation 370

4 Characteristic surfaces 384

5 The wave equation in Rn for n=1,3,2 395

6 The wave equation in Rn forn≥2 403

7 The inhomogeneous wave equation and an initial-boundary-value problem 414

8 Classification, transformation and reduction of partial differential equations 419

9 Some historical notices to the chapters Ⅳ and Ⅵ 428

References 431

Index 433

精品推荐