图书介绍

Differential and Integral Calculus Volume IIpdf电子书版本下载

Differential and Integral Calculus Volume II
  • R.Courant 著
  • 出版社: Blackie & Son Limited.
  • ISBN:
  • 出版时间:1936
  • 标注页数:682页
  • 文件大小:93MB
  • 文件页数:692页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Differential and Integral Calculus Volume IIPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER Ⅰ PRELIMINARY REMARKS ON ANALYTICAL GEOMETRY AND VECTOR ANALYSIS 1

1.Rectangular Co-ordinates and Vectors 1

2.The Area of a Triangle,the Volume of a Tetrahedron the Vector Multiplication of Vectors 12

3.Simple Theorems on Determinants of the Second and Third Order 19

4.Affine Transformations and the Multiplication of Determinants 27

CHAPTER Ⅱ FUNCTIONS OF SEVERAL VARIABLES AND THEIR DERIVATIVES 39

1.The Concept of Function in the Case of Several Variables 39

2.Continuity 44

3.The Derivatives of a Function 50

4.The Total Differential of a Function and its Geometrical Meaning 59

5.Functions of Functions (Compound Functions) and the Introduction of New Independent Variables 69

6.The Mean Value Theorem and Taylor's Theorem for Functions of Several Variables 78

7.The Application of Vector Methods 82

APPENDIX 95

1.The Principle of the Point of Accumulation in Several Dimensions and its Applications 95

2.The Concept of Limit for Functions of Several Variables 101

3.Homogeneous Functions 108

CHAPTER Ⅲ DEVELOPMENTS AND APPLICATIONS OF THE DIFFERENTIAL CALCULUS 111

1.Implicit Functions 111

2.Curves and Surfaces in Implicit Form 122

3.Systems of functions,Transformations,and Mappings 133

4.Applications 159

5.Families of Curves,Families of Surfaces,and their Envelopes 169

6.Maxima and Minima 183

APPENDIX 204

1.Sufficient Conditions for Extreme Values 204

2.Singular Points of Plane Curves 209

3.Singular Points of Surfaces 211

4.Connexion between Euler's and Lagrange's Representations of the Motion of a Fluid 212

5.Tangential Representation of a Closed Curve 213

CHAPTER Ⅳ MULTIPLE INTEGRALS 215

1.Ordinary Integrals as Functions of a Parameter 215

2.The Integral of a Continuous Function over a Region of the Plane or of Space 223

3.Reduction of the Multiple Integral to Repeated Single Integrals 236

4.Transformation of Multiple Integrals 247

5.Improper Integrals 256

6.Geometrical Applications 264

7.Physical Applications 276

APPENDIX 287

1.The Existence of the Multiple Integral 287

2.General Formula for the Area (or Volume) of a Region bounded by Segments of Straight Lines or Plane Areas (Guldin's Formula).The Polar Planimeter 294

3.Volumes and Areas in Space of any Number of Dimensions 298

4.Improper Integrals as Functions of a Parameter 307

5.The Fourier Integral 318

6.The Eulerian Integrals (Gamma Function) 323

7.Differentiation and Integration to fractional Order.Abel's Integral Equation 339

8.Note on the Definition of the Area of a Curved Surface 341

CHAPTER Ⅴ INTEGRATION OVER REGIONS IN SEVERAL DIMENSIONS 343

1.Line Integrals 343

2.Connexion between Line Integrals and Double Integrals in the Plane.(The Integral Theorems or Gauss,Stokes,and Green) 359

3.Interpretation and Applications of the Integral Theorems for the Plane 370

4.Surface Integrals 374

5.Gauss's Theorem and Green's Theorem in Space 384

6.Stokes's Theorem in Space 392

7.The Connexion between Differentiation and Integration for Several Variables 397

APPENDIX 402

1.Remarks on Gauss's Theorem and Stokes's Theorem 402

2.Representation of a Source-free Vector Field as a Curl 404

CHAPTER Ⅵ DIFFERENTIAL EQUATIONS 412

1.The Differential Equations of the Motion of a Partiele in Three Dimensions 412

2.Examples on the Mechanics of a Particle 418

3.Further Examples of Differential Equations 429

4.Linear Differential Equations 438

5.General Remarks on Differential Equations 450

6.The Potential of Attracting Charges 468

7.Further Examples of Partial Differential Equations 481

CHAPTER Ⅶ CALCULUS OF VARIATIONS 491

1.Introduction 491

2.Euler's Differential Equation in the Simplest Case 497

3.Generalizations 507

CHAPTER Ⅷ FUNCTIONS OF A COMPLEX VARIABLE 522

1.Introduction 522

2.Foundations of the Theory of Functions of a Complex Variable 530

3.The Integration of Analytic Functions 537

4.Cauchy's Formula and its Applications 545

5.Applications to Complex Integration (Contour Integration) 554

6.Many-valued Functions and Analytic Extension 563

SUPPLEMENT 569

Real Numbers and the Concept of Limit 569

Miscellaneous Examples 587

Summary of Important Theorems and Formulae 600

Answers and Hints 623

Index 679

精品推荐