图书介绍

Orthogonal Functions Revised English Editionpdf电子书版本下载

Orthogonal Functions Revised English Edition
  • G.Sansone 著
  • 出版社: Inc.
  • ISBN:
  • 出版时间:1959
  • 标注页数:411页
  • 文件大小:51MB
  • 文件页数:423页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Orthogonal Functions Revised English EditionPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ.Expansion in Series of Orthogonal Functions and Preliminary Notions of Hilbert Space 1

1.Square Integrable Functions 1

2.Linearly Independent Functions 2

3.Elementary Notions of Hilbert Space 5

4.Linear Approximations to Functions 10

5.Convergence in the Mean 12

6.Expansion in Series of Orthogonal Functions 18

7.Orthogonal Cartesian Systems of Hilbert Space 26

8.Lp Integrability.The Holder-Riesz and the Minkowski Inequalities 31

9.Generalized Convergence in the Mean of Order p 34

Ⅱ.Expansions in Fourier Series 39

1.Approximation in the Mean of a Function by a Trigonometric Polynomial of Order n 39

2.Convergence in the Mean of the Fourier Series of a Square In-tegrable Function 41

3.Continuous Functions:Sufficient Conditions for Pointwise Con-vergence 49

4.Criteria for Pointwise Convergence 55

5.Term by Term Integration of the Fourier Series:The Hardy-Littlewood Criterion for Pointwise Convergence 78

6.Fejér(C,1)Summability of Fourier Series 86

7.(C,k)Summability(k>0)of Fourier Series 107

8.Poisson's Method of Summing Fourier Series 114

9.The Fourier Integral 120

10.Gibbs'Phenomenon 141

11.Inequalities for the Partial Sums of Fourier Series of a Function of Bounded Variation 148

12.Applications of Fourier Series 150

13.The Fourier Transform 158

Ⅲ.Expansions in Series of Legendre Polynomials and Spherical Harmonics 169

1.Legendre Polynomials 169

2.Schlafli's Integral Formula 175

3.Differential Equations of Legendre Polynomials 175

4.Recurrence Formulas for Legendre Polynomials 176

5.The Christoffel Formula of Summation 179

6.Laplace's Integral Formula for Pn(x) 180

7.Mehler's Formulas 182

8.Zeros of the Legendre Polynomials:Bruns'Inequalities 186

9.The Complete Orthonormal System {[1/2(2n+1)]1/2Pn(x)} 189

10.Stieltjes'Bounds for Legendre Polynomials 195

11.Series of Legendre Polynomials for Functions of Bounded Variation:Picone's and Jackson's Theorems 202

12.Formulas and Series for Asymptotic Approximation of Legendre Polynomials 208

13.Limits of Integrals:Singular Integrals 216

14.Convergence of Series of Legendre Polynomials:Hobson's Theo-rem 220

15.Series of Stieltjes-Neumann 240

16.Series of Legendre Polynomials for a Finite Interval 244

17.Ferrers'Functions Associated with Legendre Functions 246

18.Harmonic Polynomials and Spherical Harmonics 253

19.Integral Properties of Spherical Harmonics and the Addition Theorem for Legendre Polynomials 263

20.Completeness of Spherical Harmonics with Respect to Square Integrable Functions 270

21.Laplace Series for an Integrable Function 272

22.Criterion for Pointwise Convergence of Laplace Series 273

23.(C,k)Summation of Laplace Series 275

24.Poisson Summation of Laplace Series 287

25.The Poisson Sum of Legendre Series 291

Ⅳ.Expansions in Laguerre and Hermite Series 295

1.Laguerre Polynomials 295

2.Hermite Polynomials and Tchebychef Orthogonal Polynomials 303

3.Zeros of the Hermite and Laguerre Polynomials 312

4.Relations between the Polynomials Ln(a)(x)and Hn(x) 318

5.Formulas for Asymptotic Approximation of the Polynomials Hn(x) 320

6.Formulas for Asymptotic Approximation of the Polynomials Ln(a)(x) 333

7.Completeness of the Polynomials Ln(a)(x)and Hn(x)with Respect to Square Integrable Functions 349

8.Bessel's Equality for Infinite Intervals 355

9.Criteria for Uniform Convergence of the Series of Polynomials Ln(a)(x)and Hn(x) 361

10.Pointwise Convergence of the Series of Type h and Uspensky's Criterion for Convergence 371

11.Series of Laguerre Polynomials 382

APPENDIX 386

BIBLIOGRAPHY 399

INDEX 409

精品推荐