图书介绍
An Introduction To Stochastic Processes With Special Reference To Methods and Applicationpdf电子书版本下载

- M.S.Bartlett 著
- 出版社:
- ISBN:
- 出版时间:1955
- 标注页数:312页
- 文件大小:38MB
- 文件页数:322页
- 主题词:
PDF下载
下载说明
An Introduction To Stochastic Processes With Special Reference To Methods and ApplicationPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1.GENERAL INTRODUCTION 1
1.1 Preliminary remarks 1
1.2 Elements of probability theory 2
1.21 Distribution functions and their properties 4
1.3 Theoretical classification and specification of stochastic processes 9
1.31 The characteristic functional 13
Chapter 2.RANDOM SEQUENCES 15
2.1 The random walk 15
2.11 Renewals 20
2.2 Markov chains 24
2.21 Classification by asymptotic behaviour 30
2.22 Nearest neighbour systems 34
2.3 Multiplicative chains 39
Chapter 3.PROCESSES IN CONTINUOUS TIME 45
3.1 The additive process 45
3.2 Markov chains 50
3.3 Recurrence and passage times for renewal processes 56
3.31 Ergodic properties 64
3.32 Alternative method for Markov chains 67
3.4 Multiplicative chains 69
3.41 The effect of immigration 76
3.42 Point processes 78
3.5 General equations for Markov processes 83
Chapter 4.MISCELLANEOUS STATISTICAL APPLICATIONS 89
4.1 Some applications of the random walk or additive process 89
4.2 Simple renewal as a Markov process 96
4.21 Queues 98
4.3 Population growth as a multiplicative process 106
4.31 Growth and mutation in bacterial populations 113
4.32 Population genetics 120
4.4 Epidemic models 124
Chapter 5.LIMITING STOCHASTIC OPERATIONS 135
5.1 Stochastic convergence 135
5.11 Stochastic differentiation and integration 139
5.2 Stochastic linear difference and differential equations 144
5.21 Relations between direct stochastic equations and distribution equations 152
Chapter 6.STATIONARY PROCESSES 159
6.1 Processes stationary to the second order 159
6.11 The spectral function 161
6.12 Stationary point processes and covariance densities 166
6.2 Generalized harmonic analysis 168
6.21 The ergodic property 171
6.3 Processes with continuous spectra 173
6.31 Further examples of stationary processes 176
6.4 Complete stationarity 179
6.41 Recurrence times for completely stationary processes 182
6.5 Multivariate and multidimensional stationary processes 188
6.51 Isotropy and other special conditions 192
Chapter 7.PREDICTION AND COMMUNICATION THEORY 198
7.1 Linear prediction for stationary processes 198
7.11 Further associated problems 203
7.2 Theory of communication 208
Chapter 8.THE STATISTICAL ANALYSIS OF STOCHASTIC PROCESSES 221
8.1 Principles of statistical inference 221
8.11 Application to stochastic processes 226
8.2 The analysis of probability chains 228
8.21 Goodness of fit of marginal frequency distributions 238
8.3 Estimation problems 240
Chapter 9.CORRELATION ANALYSIS OF TIME-SERIES 253
9.1 Correlation and regression analysis of stationary sequences 253
9.11 Goodness of fit tests 259
9.12 Time-series specified for continuous time 265
9.13 Numerical examples 269
9.2 Harmonic(periodogram)analysis 274
9.21 Further notes and problems related to the spectrum 284
9.3 Multivariate autoregressive series 288
Bibliography 295
Glossary of stochastic processes 307
Index 308