图书介绍

Nonlinear Vibrations in Mechanical and Electrical Systemspdf电子书版本下载

Nonlinear Vibrations in Mechanical and Electrical Systems
  • J.J.Stoker 著
  • 出版社: Inc.
  • ISBN:
  • 出版时间:1950
  • 标注页数:273页
  • 文件大小:64MB
  • 文件页数:292页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Nonlinear Vibrations in Mechanical and Electrical SystemsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ.Linear Vibrations 1

1.Introduction 1

2.Free vibrations 1

3.Forced vibrations 1

4.Subharmonics and ultraharmonics 7

5.Linear systems with variable coefficients 10

6.Principle of superposition for linear systems.Contrast with nonlinear systems 10

Ⅱ.Free Vibrations of Undamped Systems with Nonlinear Restoring Forces 13

1.Classification of problems 13

2.Examples of systems governed by x + f(x) = 0 14

3.Integration of the equation mx + f(x) = 0 18

4.Geometrical discussion of the energy curves in the phase plane 19

Ⅲ.Free Oscillations with Damping and the Geometry of Integral Curves 27

1.The plan of this chapter 27

A.Geometrical and Graphical Discussion of Integral Curves 29

2.Geometrical discussion of the integral curves in a special case 29

3.Liébard's graphical construction 31

B.A Study of Singular Points 36

4.Singular points and criteria for their classification 36

5.Special cases of dv/dx = (ax + bv)/(cx + dv) 38

6.Criteria for distinguishing the types of singularities 40

7.The index of a singularity 45

C.Applications Using the Notion of Singularities 48

8.Free oscillations without damping 48

9.Wire carrying a current and restrained by springs 50

10.Elastic stability treated dynamically 54

11.The pendulum with damping proportional to the square of the angular velocity 59

12.The pendulum with viscous damping 61

13.Description of the operation of alternating current motors 66

14.Pull-out torques of synchronous motors 70

Ⅳ.Forced Oscillations of Systems with Nonlinear Restoring Force 81

1.Introduction 81

2.Duffing's method for the harmonic oscillations without damping 83

3.The effect of viscous damping on the harmonic solutions 90

4.Jump phenomena 94

5.Hunting and pull out torques of synchronous motors under oscillatory loads 96

6.The perturbation method 98

7.Subharmonics response 103

8.Subharmonics with damping 107

9.The method of Rauscher 110

10.Combination tones 112

11.Stability questions 114

12.Résumé 116

Ⅴ.Self-sustained Oscillations 119

A.Free Oscillations 119

1.An electrical Problem leading to free self-sustained oscillations 119

2.Self-sustained oscillations in mechanical systems 125

3.A special case of the van der Pol equation 128

4.The basic character of self-excited oscillations 128

5.Perturbation method for the free oscillation 134

6.Relaxation oscillations 137

7.Higher order approximations for relaxation oscillations 140

B.Forced Oscillations in Self-sustained Systems 147

8.A typical physical problem 147

9.The method of van der Pol for the forced oscillations 149

10.The method of Andronow and Witt 153

11.Response curves for the harmonic oscillations 155

12.Stability of the harmonic oscillations 159

13.Nonharmonic response in general.Existence of stable combination oscillations for large detuning 163

14.Quantitative treatment of combination oscillations for large detuning 166

15.Nonexistence of combination oscillations when the detuning and the amplitude of the excitation and sufficiently small 171

16.Stability and uniqueness of the combination oscillations for large detuning 182

17.Description of the response phenomena for intermediate values of the detuning o.jump phenomena 184

18.Subharmonic response 187

Ⅵ.Hill's Equation and Its Application to the Study of the Stability of Nonlinear Oscillations 189

1.Mechanical and electrical problems leading to Hill's equation 189

2.Floquet theory for linear differential equations with periodic coefficients 193

3.The stability problem for Hill's equation and the Mathieu equation 198

4.The Mathieu equation 202

5.Stability of the solutions of the Mathieu equation for small values of e 208

6.Stability of the harmonic solutions of the Duffing equation 213

7.Orbital Stability of the harmonic solutions of the Duffing equation 219

Appendix Ⅰ.Mathematical Justification of the Perturbation Method 223

1.Existence of the perturbation series in general 223

2.Existence of the perturbation series in concrete cases 227

A.Free oscillations 228

B.Forced oscillations 231

Appendix Ⅱ.The Existence of Combination Oscillations 235

Appendix Ⅲ.The Existence of Limit Cycles in Free Oscillations of Self-sustained Systems 241

1.General discussion 241

2.Existence of a limit cycle 243

Appendix Ⅳ.Relaxation Oscillations of the van der Pol Equation 247

Appendix Ⅴ.The Criterion of Poincaré for Orbital Stability 253

Appendix Ⅵ.The Uniqueness of a Limit Cycle in the Free Oscillations of a Self-sustained System 259

1.General remarks 259

2.The uniqueness proof 260

Bibliography 265

Index 269

精品推荐