图书介绍

离散数学引论 英文pdf电子书版本下载

离散数学引论  英文
  • IanAnderson编著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:9787302214823
  • 出版时间:2009
  • 标注页数:200页
  • 文件大小:6MB
  • 文件页数:213页
  • 主题词:离散数学-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

离散数学引论 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.Counting and Binomial Coefficients 1

1.1 Basic Principles 1

1.2 Factorials 2

1.3 Selections 3

1.4 Binomial Coefficients and Pascal's Triangle 6

1.5 Selections with Repetitions 10

1.6 A Useful Matrix Inversion 13

2.Recurrence 19

2.1 Some Examples 19

2.2 The Auxiliary Equation Method 23

2.3 Generating Functions 26

2.4 Derangements 28

2.5 Sorting Algorithms 32

2.6 Catalan Numbers 34

3.Introduction to Graphs 43

3.1 The Concept of a Graph 43

3.2 Paths in Graphs 46

3.3 Trees 47

3.4 Spanning Trees 50

3.5 Bipartite Graphs 52

3.6 Planarity 54

3.7 Polyhedra 60

4.Travelling Round a Graph 69

4.1 Hamiltonian Graphs 69

4.2 Planarity and Hamiltonian Graphs 71

4.3 The Travelling Salesman Problem 74

4.4 Gray Codes 76

4.5 Eulerian Graphs 78

4.6 Eulerian Digraphs 81

5.Partitions and Colourings 89

5.1 Partitions of a Set 89

5.2 Stirling Numbers 91

5.3 Counting Functions 94

5.4 Vertex Colourings of Graphs 96

5.5 Edge Colourings of Graphs 99

6.The Inclusion-Exclusion Principle 107

6.1 The Principle 107

6.2 Counting Surjections 112

6.3 Counting Labelled Trees 113

6.4 Scrabble 114

6.5 The Ménage Problem 115

7.Latin Squares and Hall's Theorem 121

7.1 Latin Squares and Orthogonality 121

7.2 Magic Squares 125

7.3 Systems of Distinct Representatives 127

7.4 From Latin Squares to Affine Planes 131

8.Schedules and 1-Factorisations 137

8.1 The Circle Method 137

8.2 Bipartite Tournaments and 1-Factorisations of Kn,n 142

8.3 Tournaments from Orthogonal Latin Squares 145

9.Introduction to Designs 149

9.1 Balanced Incomplete Block Designs 149

9.2 Resolvable Designs 156

9.3 Finite Projective Planes 159

9.4 Hadamard Matrices and Designs 161

9.5 Difference Methods 165

9.6 Hadamard Matrices and Codes 167

Appendix 179

Solutions 183

Further Reading 195

Bibliography 197

Index 199

精品推荐