图书介绍
群的上同调pdf电子书版本下载

- (美)布朗编著 著
- 出版社: 世界图书广东出版公司
- ISBN:9787510004643
- 出版时间:2009
- 标注页数:308页
- 文件大小:11MB
- 文件页数:319页
- 主题词:群论-研究生-教材-英文
PDF下载
下载说明
群的上同调PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Introduction 1
CHAPTER Ⅰ Some Homological Algebra 4
0.Review of Chain Complexes 4
1.Free Resolutions 10
2.Group Rings 12
3.G-Modules 13
4.Resolutions of Z Over ZG via Topology 14
5.The Standard Resolution 18
6.Periodic Resolutions via Free Actions on Spheres 20
7.Uniqueness of Resolutions 21
8.Projective Modules 26
Appendix. Review of Regular Coverings 31
CHAPTER Ⅱ The Homology of a Group 33
1.Generalities 33
2.Co-invariants 34
3.The Definition of H*G 35
4.Topological Interpretation 36
5.Hopf's Theorems 41
6.Functoriality 48
7.The Homology of Amalgamated Free Products 49
Appendix. Trees and Amalgamations 52
CHAPTER Ⅲ Homology and Cohomology with Coefficients 55
0.Preliminaries on ?G and HomG 55
1.Definition of H*(G,M)and H*(G,M) 56
2.Tor and Ext 60
3.Extension and Co-extension of Scalars 62
4.Injective Modules 65
5.Induced and Co-induced Modules 67
6.H* and H* as Functors of the Coefficient Module 71
7.Dimension Shifting 74
8.H* and H* as Functors of Two Variables 78
9.The Transfer Map 80
10.Applications of the Transfer 83
CHAPTER Ⅳ Low Dimensional Cohomology and Group Extensions 86
1.Introduction 86
2.Split Extensions 87
3.The Classification of Extensions with Abelian Kernel 91
4.Application:p-Groups with a Cyclic Subgroup of Index p 97
5.Crossed Modules and H3(Sketch) 102
6.Extensions With Non-Abelian Kernel(Sketch) 104
CHAPTER Ⅴ Products 107
1.The Tensor Product of Resolutions 107
2.Cross-products 108
3.Cup and Cap Products 109
4.Composition Products 114
5.The Pontryagin Product 117
6.Application:Calculation of the Homology of an Abelian Group 121
CHAPTER Ⅵ Cohomology Theory of Finite Groups 128
1.Introduction 128
2.Relative Homological Algebra 129
3.Complete Resolutions 131
4.Definition of ? 134
5.Properties of ? 136
6.Composition Products 142
7.A Duality Theorem 144
8.Cohomologically Trivial Modules 148
9.Groups with Periodic Cohomology 153
CHAPTER Ⅶ Equivariant Homology and Spectral Sequences 161
1.Introduction 161
2.The Spectral Sequence of a Filtered Complex 161
3.Double Complexes 164
4.Example:The Homology of a Union 166
5.Homology of a Group with Coefficients in a Chain Complex 168
6.Example:The Hochschild-Serre Spectral Sequence 171
7.Equivariant Homology 172
8.Computation of d1 175
9.Example:Amalgamations 178
10.Equivariant Tate Cohomology 180
CHAPTER Ⅷ Finiteness Conditions 183
1.Introduction 183
2.Cohomological Dimension 184
3.Serre's Theorem 190
4.Resolutions of Finite Type 191
5.Groups of Type FPn 197
6.Groups of Type FP and FL 199
7.Topological Interpretation 205
8.Further Topological Results 210
9.Further Examples 213
10.Duality Groups 219
11.Virtual Notions 225
CHAPTER Ⅸ Euler Characteristics 230
1.Ranks of Projective Modules:Introduction 230
2.The Hattori-Stallings Rank 231
3.Ranks Over Commutative Rings 235
4.Ranks Over Group Rings;Swan's Theorem 239
5.Consequences of Swan's Theorem 242
6.Euler Characteristics of Groups:The Torsion-Free Case 246
7.Extension to Groups with Torsion 249
8.Euler Characteristics and Number Theory 253
9.Integrality Properties of x(Γ) 257
10.Proof of Theorem 9.3;Finite Group Actions 258
11.The Fractional Part of x(Γ) 261
12.Acyclic Covers;Proof of Lemma 11.2 265
13.The p-Fractional Part of x(Γ) 266
14.A Formula for xг(?) 270
CHAPTER Ⅹ Farrell Cohomology Theory 273
1.Introduction 273
2.Complete Resolutions 273
3.Definition and Properties of ?*(Γ) 277
4.Equivariant Farrell Cohomology 281
5.Cohomologically Trivial Modules 287
6.Groups with Periodic Cohomology 288
7.?*(Γ)and the Ordered Set of Finite Subgroups of Γ 291
References 295
Notation Index 301
Index 303