图书介绍

医学图像重建 英文pdf电子书版本下载

医学图像重建  英文
  • (美)Gengsheng Lawrence Zeng 著
  • 出版社: 北京:高等教育出版社
  • ISBN:9787040204377
  • 出版时间:2009
  • 标注页数:198页
  • 文件大小:24MB
  • 文件页数:210页
  • 主题词:医学图像-图像处理-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

医学图像重建 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Basic Principles of Tomography 1

1.1 Tomography 1

1.2 Projection 3

1.3 Image Reconstruction 6

1.4 Backprojection 8

1.5 Mathematical Expressions 10

1.5.1 Projection 10

1.5.2 Backprojection 11

1.5.3 The Dirac δ-function 12

1.6 Worked Examples 14

1.7 Summary 17

Problems 18

References 19

2 Parallel-Beam Image Reconstruction 21

2.1 Fourier Transform 21

2.2 Central Slice Theorem 22

2.3 Reconstruction Algorithms 25

2.3.1 Method 1 25

2.3.2 Method 2 26

2.3.3 Method 3 27

2.3.4 Method 4 28

2.3.5 Method 5 28

2.4 A Computer Simulation 30

2.5 ROI Reconstruction with Truncated Projections 31

2.6 Mathematical Expressions 36

2.6.1 The Fourier Transform and Convolution 36

2.6.2 The Hilbert Transform and the Finite Hilbert Transform 36

2.6.3 Proof of the Central Slice Theorem 39

2.6.4 Derivation of the Filtered Backprojection Algorithm 40

2.6.5 Expression of the Convolution Backprojection Algorithm 41

2.6.6 Expression of the Radon Inversion Formula 41

2.6.7 Derivation of the Backprojection-then-Filtering Algorithm 41

2.7 Worked Examples 42

2.8 Summary 45

Problems 46

References 46

3 Fan-Beam Image Reconstruction 49

3.1 Fan-Beam Geometry and Point Spread Function 49

3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 52

3.3 Short Scan 54

3.4 Mathematical Expressions 56

3.4.1 Derivation of a Filtered Backprojection Fan-Beam Algorithm 57

3.4.2 A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform 58

3.5 Worked Examples 60

3.6 Summary 63

Problems 64

References 65

4 Transmission and Emission Tomography 67

4.1 X-Ray Computed Tomography 67

4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 71

4.3 Attenuation Correction for Emission Tomography 75

4.4 Mathematical Expressions 79

4.5 Worked Examples 81

4.6 Summary 83

Problems 83

References 84

5 3D Image Reconstruction 87

5.1 Parallel Line-Integral Data 87

5.1.1 Backprojection-then-Filtering 90

5.1.2 Filtered Backprojection 91

5.2 Parallel Plane-Integral Data 92

5.3 Cone-Beam Data 94

5.3.1 Feldkamp's Algorithm 95

5.3.2 Grangeat's Algorithm 96

5.3.3 Katsevich's Algorithm 97

5.4 Mathematical Expressions 101

5.4.1 Backprojection-then-Filtering for Parallel Line-Integral Data 102

5.4.2 Filtered Backprojection Algorithm for Parallel Line-Integral Data 103

5.4.3 3D Radon Inversion Formula 104

5.4.4 3D Backprojection-then-Filtering Algorithm for Radon Data 104

5.4.5 Feldkamp's Algorithm 105

5.4.6 Tuy's Relationship 106

5.4.7 Grangeat's Relationship 108

5.4.8 Katsevich's Algorithm 111

5.5 Worked Examples 117

5.6 Summary 119

Problems 120

References 121

6 Iterative Reconstruction 125

6.1 Solving a System of Linear Equations 125

6.2 Algebraic Reconstruction Technique 130

6.3 Gradient Descent Algorithms 131

6.4 Maximum-Likelihood Expectation-Maximization Algorithms 134

6.5 Ordered-Subset Expectation-Maximization Algorithm 135

6.6 Noise Handling 136

6.6.1 Analytical Methods—Windowing 136

6.6.2 Iterative Methods—Stopping Early 137

6.6.3 Iterative Methods——Choosing Pixels 138

6.6.4 Iterative Methods—Accurate Modeling 140

6.7 Noise Modeling as a Likelihood Function 141

6.8 Including Prior Knowledge 143

6.9 Mathematical Expressions 145

6.9.1 ART 145

6.9.2 Conjugate Gradient Algorithm 146

6.9.3 ML-EM 148

6.9.4 OS-EM 151

6.9.5 Green's One-Step Late Algorithm 151

6.9.6 Matched and Unmatched Projector/Backprojector Pairs 151

6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization 153

6.11 Worked Examples 156

6.12 Summary 167

Problems 168

References 170

7 MRI Reconstruction 175

7.1 The"M" 175

7.2 The"R" 177

7.3 The"I" 180

7.3.1 To Obtain z-Information—Slice Selection 180

7.3.2 To Obtain x-Information—Frequency Encoding 182

7.3.3 To Obtain y-Information—Phase Encoding 183

7.4 Mathematical Expressions 185

7.5 Worked Examples 188

7.6 Summary 190

Problems 191

References 192

Index 193

精品推荐