图书介绍

INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONSpdf电子书版本下载

INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONS
  • ERWIN KREYSZIG 著
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:15MB
  • 文件页数:701页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1.Metric Spaces 1

1.1 Metric Space 2

1.2 Further Examples of Metric Spaces 9

1.3 Open Set, Closed Set, Neighborhood 17

1.4 Convergence, Cauchy Sequence, Completeness 25

1.5 Examples.Completeness Proofs 32

1.6 Completion of Metric Spaces 41

Chapter 2.Normed Spaces.Banach Spaces 49

2.1 Vector Space 50

2.2 Normed Space.Banach Space 58

2.3 Further Properties of Normed Spaces 67

2.4 Finite Dimensional Normed Spaces and Subspaces 72

2.5 Compactness and Finite Dimension 77

2.6 Linear Operators 82

2.7 Bounded and Continuous Linear Operators 91

2.8 Linear Functionals 103

2.9 Linear Operators and Functionals on Finite Dimen-sional Spaces 111

2.10 Normed Spaces of Operators.Dual Space 117

Chapter 3.Inner Product Spaces.Hilbert Spaces 127

3.1 Inner Product Space.Hilbert Space 128

3.2 Further Properties of Inner Product Spaces 136

3.3 Orthogonal Complements and Direct Sums 142

3.4 Orthonormal Sets and Sequences 151

3.5 Series Related to Orthonormal Sequences and Sets 160

3.6 Total Orthonormal Sets and Sequences 167

3.7 Legendre, Hermite and Laguerre Polynomials 175

3.8 Representation of Functionals on Hilbert Spaces 188

3.9 Hilbert-Adjoint Operator 195

3.10 Self-Adjoint, Unitary and Normal Operators 201

Chapter 4.Fundamental Theorems for Normed and Banach Spaces 209

4.1 Zorn’s Lemma 210

4.2 Hahn-Banach Theorem 213

4.3 Hahn-Banach Theorem for Complex Vector Spaces and Normed Spaces 218

4.4 Application to Bounded Linear Functionals on C[a, b] 225

4.5 Adjoint Operator 231

4.6 Reflexive Spaces 239

4.7 Cotegory Theorem.Uniform Boundedness Theorem 246

4.8 Strong and Weak Convergence 256

4.9 Convergence of Sequences of Operators and Functionals 263

4.10 Application to Summability of Sequences 269

4.11 Numerical Integration and Weak Convergence 276

4.12 Open Mapping Theorem 285

4.13 Closed Linear Operators.Closed Graph Theorem 291

Chapter 5.Further Applications: Banach Fixed Point Theorem 299

5.1 Banach Fixed Point Theorem 299

5.2 Application of Banach’s Theorem to Linear Equations 307

5.3 Applications of Banach’s Theorem to Differential Equations 314

5.4 Application of Banach’s Theorem to Integral Equations 319

Chapter 6.Further Applications: Approximation Theory 327

6.1 Approximation in Normed Spaces 327

6.2 Uniqueness, Strict Convexity 330

6.3 Uniform Approximation 336

6.4 Chebyshev Polynomials 345

6.5 Approximation in Hilbert Space 352

6.6 Splines 356

Chapter 7.Spectral Theory of Linear Operators in Normed Spaces 363

7.1 Spectral Theory in Finite Dimensional Normed Spaces 364

7.2 Basic Concepts 370

7.3 Spectral Properties of Bounded Linear Operators 374

7.4 Further Properties of Resolvent and Spectrum 379

7.5 Use of Complex Analysis in Spectral Theory 386

7.6 Banach Algebras 394

7.7 Further Properties of Banach Algebras 398

Chapter 8.Compact Linear Operators on Normed Spaces and Their Spectrum 405

8.1 Compact Linear Operators on Normed Spaces 405

8.2 Further Properties of Compact Linear Operators 412

8.3 Spectral Properties of Compact Linear Operators on Normed Spaces 419

8.4 Further Spectral Properties of Compact Linear Operators 428

8.5 Operator Equations Involving Compact Linear Operators 436

8.6 Further Theorems of Fredholm Type 442

8.7 Fredholm Alternative 451

Chapter9.Spectral Theory of Bounded Self-Adjoint Linear Operators 459

9.1 Spectral Properties of Bounded Self-Adjoint Linear Operators 460

9.2 Further Spectral Properties of Bounded Self-Adjoint Linear Operators 465

9.3 Positive Operators 469

9.4 Square Roots of a Positive Operator 476

9.5 Projection Operators 480

9.6 Further Properties of Projections 486

9.7 Spectral Family 492

9.8 Spectral Family of a Bounded Self-Adjoint Linear Operator 497

9.9 Spectral Representation of Bounded Self-Adjoint Linear Operators 505

9.10 Extension of the Spectral Theorem to Continuous Functions 512

9.11 Properties of the Spectral Family of a Bounded Self-Adjoint Linear Operator 516

Chapter 10.Unbounded Linear Operators in Hilbert Space 523

10.1 Unbounded Linear Operators and their Hilbert-Adjoint Operators 524

10.2 Hilbert-Adjoint Operators, Symmetric and Self-Adjoint Linear Operators 530

10.3 Closed Linear Operators and Closures 535

10.4 Spectral Properties of Self-Adjoint Linear Operators 541

10.5 Spectral Representation of Unitary Operators 546

10.6 Spectral Representation of Self-Adjoint Linear Operators 556

10.7 Multiplication Operator and Differentiation Operator 562

Chapter 11.Unbounded Linear Operators inffQuantum Mechanics 571

11.1 Basic Ideas.States, Observables, Position Operator 572

11.2 Momentum Operator.Heisenberg Uncertainty Principle 576

11.3 Time-lndependent Schrodinger Equation 583

11.4 Hamilton Operator 590

11.5 Time-Dependent Schrodinger Equation 598

Appendix 1.Some Material for Review and Reference 609

A1.1 Sets 609

A1.2 Mappings 613

A1.3 Families 617

A1.4 Equivalence Relations 618

A1.5 Compactness 618

A1.6 Supremum and Infimum 619

A1.7 Cauchy Convergence Criterion 620

A1.8 Groups 622

Appendix 2.Answers to Odd-Numbered Problems 623

Appendix 3.References 675

Index 681

精品推荐