图书介绍
Introduction to Linear Algebra (第五版)pdf电子书版本下载

- [美]李 W.约翰逊(Lee W.Johnson) R.迪安 里斯(R.Dean Riess) 吉米 T.阿诺德(Jimmy T.Amold)著 著
- 出版社: 机械工业出版社
- ISBN:
- 出版时间:2003
- 标注页数:555页
- 文件大小:87MB
- 文件页数:615页
- 主题词:
PDF下载
下载说明
Introduction to Linear Algebra (第五版)PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.MATRICES AND SYSTEMS OF LINEAR EQUATIONS 1
1.1 Introduction to Matrices and Systems of Linear Equations 2
1.2 Echelon Form and Gauss-Jordan Elimination 14
1.3 Consistent Systems of Linear Equations 28
1.4 Applications(Optional) 39
1.5 Matrix Operations 46
1.6 Algebraic Properties of Matrix Operations 61
1.7 Linear Independence and Nonsingular Matrices 71
1.8 Data Fitting, Numerical Integration, and Numerical Differentiation (Optional) 80
1.9 Matrix Inverses and Their Properties 92
2.VECTORS IN 2-SPACE AND 3-SPACE 113
2.1 Vectors in the Plane 114
2.2 Vectors in Space 128
2.3 The Dot Product and the Cross Product 135
2.4 Lines and Planes in Space 148
3.THE VECTOR SPACE Rn 163
3.1 Introduction 164
3.2 Vector Space Properties of Rn 167
3.3 Examples of Subspaces 176
3.4 Bases for Subspaces 188
3.5 Dimension 202
3.6 Orthogonal Bases for Subspaces 214
3.7 Linear Transformations from Rn to Rm 225
3.8 Least-Squares Solutions to Inconsistent Systems,with Applications to Data Fitting 243
3.9 Theory and Practice of Least Squares 255
4.THE EIGENVALUE PROBLEM 275
4.1 The Eigenvalue Problem for (2×2) Matrices 276
4.2 Determinants and the Eigenvalue Problem 280
4.3 Elementary Operations and Determinants (Optional) 290
4.4 Eigenvalues and the Characteristic Polynomial 298
4.5 Eigenvectorsand Eigenspaces 307
4.6 Complex Eigenvalues and Eigenvectors 315
4.7 Similarity Transformations and Diagonalization 325
4.8 Difference Equations; Markov Chains; Systems of Differential Equations (Optional) 338
5.VECTOR SPACES AND LINEAR TRANSFORMATIONS 357
5.1 Introduction 358
5.2 Vector Spaces 360
5.3 Subspaces 368
5.4 Linear Independence, Bases, and Coordinates 375
5.5 Dimension 388
5.6 Inner-Product Spaces, Orthogonal Bases, and Projections (Optional) 392
5.7 Linear Transformations 403
5.8 Operations with Linear Transformations 411
5.9 Matrix Representations for Linear Transformations 419
5.10 Change of Basis and Diagonalization 431
6.DETERMINANTS 447
6.1 Introduction 448
6.2 Cofactor Expansions of Determinants 448
6.3 Elementa Operations and Determinants 455
6.4 Cramer's Rule 465
6.5 Applications of Determinants:Inverses and Wronksians 471
7.EIGENVALUES AND APPLICATIONS 483
7.1 Quadratic Forms 484
7.2 Systems of Differential Equations 493
7.3 Transformation to Hessenberg Form 502
7.4 Eigenvalues of Hessenberg Matrices 510
7.5 Householder Transformations 519
7.6 The QR Factorization and Least-Squares Solutions 531
7.7 Matrix Polynomials and the Cayley-Hamilton Theorem 540
7.8 Generalized Eigenvectors and Solutions of Systemsof Differential Equations 546