图书介绍
多层纳米结构中的输运 动力学平均场方法=TRANAPORT IN MULTILAYERED NANOSTRUCTURES:THE DYNAMICAL MEAN-FIELD THEORY APPROApdf电子书版本下载

- (美)弗雷里克斯著 著
- 出版社: 北京大学出版社
- ISBN:
- 出版时间:2012
- 标注页数:327页
- 文件大小:73MB
- 文件页数:344页
- 主题词:
PDF下载
下载说明
多层纳米结构中的输运 动力学平均场方法=TRANAPORT IN MULTILAYERED NANOSTRUCTURES:THE DYNAMICAL MEAN-FIELD THEORY APPROAPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Introduction to Multilayered Nanostructures 1
1.1 Thin Film Growth and Multilayered Nanostructures 2
1.2 Strongly Correlated Materials 14
1.3 The Proximity Effect 17
1.4 Electronic Charge Reconstruction at an Interface 20
1.5 Roadmap to Real-Materials Calculations 27
2.Dynamical Mean-Field Theory in the Bulk 31
2.1 Models of Strongly Correlated Electrons 31
2.2 Second Quantization 39
2.3 Imaginary Time Green's Functions 46
2.4 Real Time Green's Functions 53
2.5 The Limit d→∞and the Mapping onto a Time-Dependent Impurity Problem 61
2.6 Impurity Problem Solvers 67
2.7 Computational Algorithms 77
2.8 Linear-Response dc-Transport in the Bulk 80
2.9 Metal-Insulator Transitions within DMFT 92
2.10 Bulk Charge and Thermal Transport 99
3.Dynamical Mean-Field Theory of a Multilayered Nanostructure 113
3.1 Potthoff-Nolting Approach to Multilayered Nanostructures 113
3.2 Quantum Zipper Algorithm (Renormalized Perturbation Expansion) 116
3.3 Computational Methods 119
3.4 Density of States for a Nanostructure 122
3.5 Longitudinal Charge Transport Through a Nanostructure 129
3.6 Charge Reconstruction(Schottky Barriers) 140
3.7 Longitudinal Heat Transport Through a Nanostructure 152
3.8 Superconducting Leads and Josephson Junctions 172
3.9 Finite Dimensions and Vertex Corrections 193
4.Thouless Energy and Normal-State Transport 197
4.1 Heuristic Derivation of the Generalized Thouless Energy 197
4.2 Thouless Energy in Metals 199
4.3 Thouless Energy in Insulators 206
4.4 Crossover from Tunneling to Incoherent Transport in Devices 209
5.Josephson Junctions and Superconducting Transport 215
5.1 Introduction to Superconducting Electronics Devices 215
5.2 Superconducting Proximity Effect 219
5.3 Josephson Current 224
5.4 Figure-of-Merit for a Josephson Junction 230
5.5 Effects of Temperature 234
5.6 Density of States and Andreev Bound States 238
6.Thermal Transport 249
6.1 Electronic Charge Reconstruction Near a Metal-Insulator Transition 249
6.2 Thermal Transport Through a Barrier Near the Metal-Insulator Transition 253
7.Future Directions 261
7.1 Spintronics Devices 261
7.2 Multiband Models for Real Materials 265
7.3 Nonequilibrium Properties 268
7.4 Summary 270
Appendix A Problems 271
A.1 Jellium model 271
A.2 Density of states for the hypercubic lattice in 1,2,3,and ∞ dimensions 272
A.3 Noninteracting electron in a time-dependent potential 273
A.4 Relation between imaginary-time summations and real-axis integrals 274
A.5 The Green's functions of a local Fermi liquid 276
A.6 Rigid-band approximation to the Falicov-Kimball model 276
A.7 Comparing the spectral formula to the Hilbert transform 278
A.8 Imaginary-time Green's functions 278
A.9 Partition function for a spinless electron in a general time-dependent field 279
A.10 Mapping the impurity in a field to an impurity coupled to a chain in the NRG approach 279
A.11 Impurity Green's function for the chain Hamiltonian in the NRG approach 281
A.12 Solving the NRG many-body Hamiltonian for the chain 282
A.13 Metal-insulator transition in the half-filled Falicov-Kimball model 283
A.14 Kramers-Kronig analysis for the Green's function,and the effect of the pole in the Mott insulator 283
A.15 Metal-insulator transition on a simple cubic lattice 284
A.16 DC conductivity for the simple cubic lattice 287
A.17 Jonson-Mahan theorem 288
A.18 Charge and thermal conductivity for the Falicov-Kimball model 290
A.19 The particle-hole asymmetric metal-insulator transition 291
A.20 Non Fermi-liquid behavior of the Falicov-Kimball model 291
A.21 Thermopower of the Falicov-Kimball model and the figure-of-merit 292
A.22 U→∞ Green's functions 292
A.23 Determining Gαβ from the quantum zipper algorithm 293
A.24 The stability of the left and right recursion relations of the quantum zipper algorithm 294
A.25 Efficient numerical evaluation of integrals via changes of variables 294
A.26 Equilibrium solutions with charge reconstruction 296
A.27 Local charge and heat current operators for a nanostructure 297
A.28 Operator identity for the Jonson-Mahan theorem 299
A.29 BCS gap equation 299
A.30 Equations of motion needed for the Nambu-Gor'kov formalism 300
A.31 Spin one-half atom in a time-dependent normal and anomalous dynamical mean field 300
A.32 Hilbert transformation in the Nambu-Gor'kov formalism 301
A.33 Evaluating Hilbert transformation-like integrals needed for determining the bulk critical current on a simple-cubic lattice 302
A.34 The single-plane Mott-insulating barrier 304
A.35 Green's functions of the particle-hole symmetric Falicov-Kimball model nanostructure 305
A.36 Parallel implementation for the resistance calculation of a nanostructure 306
A.37 Resistance and Thouless energy of a nanostructure 306
Bibliography 309
Index 323