图书介绍
张量分析及其在连续介质力学中的应用pdf电子书版本下载

- 孔超群,李康先编 著
- 出版社: 哈尔滨:哈尔滨船舶工程学院出版社
- ISBN:15413·002
- 出版时间:1986
- 标注页数:122页
- 文件大小:5MB
- 文件页数:130页
- 主题词:
PDF下载
下载说明
张量分析及其在连续介质力学中的应用PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一章 直角坐标系中的矢量和张量 2
§1.1 符号及求和约定 2
(一)指标记法 2
(二)求和约定及哑标 3
(三)自由指标 3
(四)克罗尼克尔符号 4
(五)置换符号 5
(六)指标记法的运算特点 6
§1.2 矢量的变换规律 6
(一)坐标变换 6
(二)矢量的变换规律 7
§1.3 笛卡尔张量 10
§1.4 笛卡尔张量的代数运算 14
(一)张量的和 14
(二)张量的外积 14
(三)张量的缩并 14
(四)张量的内积 15
(五)对称张量和反对称张量 15
(六)关于张量和矩阵 15
(七)张量判别法则(商律) 16
§1.5 二阶张量的主轴和主值 17
(一)二阶张量的特征方程 17
(三)二阶对称张量的特征矢量 18
(二)二阶对称张量的特征值 18
(四)二阶对称张量的主轴和主值 19
§1.6 笛卡尔张量的微分 21
(一)张量场 21
(二)张量场的梯度 22
(三)张量场的散度 23
第二章 斜角直线坐标系中的张量 25
§2.1 斜角直线坐标系 25
(一)同时采用上、下标的记法和求和约定 25
(二)斜角直线坐标系 25
(三)倒易基 27
(一)坐标变换 29
§2.2 斜角坐标系的变换 29
(二)坐标变换的矩阵表达式 31
§2.3 矢量的变换规律 32
(一)矢量的逆变分量和协变分量 32
(二)矢量的变换规律 33
§2.4 度量张量 34
(一)度量张量 34
(二)指标的升降 36
§2.5 张量与张量代数 37
(一)张量的变换规律 37
(二)张量的代数运算 38
(三)置换张量 42
(一)曲线坐标系 45
§3.1 曲线坐标系的变换 45
第三章 曲线坐标系中的张量 45
(二)坐标变换的条件 47
(三)局部基 48
(四)基底的变换 50
§3.2 一般张量 52
(一)矢量和张量的变换规律 52
(二)张量的物理分量 55
§3.3 克里斯托弗符号 58
(一)克里斯托弗符号 58
(二)克里斯托弗符号的变换 60
(三)克里斯托弗符号与度量张量的关系 61
(一)矢量分量的协变导数 62
§3.4 矢量分量的协变导数 62
(二)协变导数的张量特性 63
(三)关于偏导数与协变导数 64
§3.5 张量分量的协变导数 65
(一)张量分量的协变导数 65
(二)张量与张量积的协变导数 66
(三)求导顺序的交换律 67
(四)李奇定理 68
§3.6 梯度、散度、旋度的运算和高斯定理 69
(一)标量场的梯度 69
(二)散度和拉普拉斯算符 69
(三)旋度的运算 70
(四)高斯定理 71
§3.7 张量方程 72
第四章 张量分析在连续介质力学中的应用 74
§4.1 应力张量 74
(一)直角坐标系中的应力张量 74
(二)一般坐标系中的应力张量 76
(三)应力张量的物理分量 78
(四)平衡方程 79
§4.2 应变张量 81
(一)形变和应变张量 81
(二)直角坐标系中应变分量的物理意义 83
(四)应变张量的物理分量 87
(三)旋转张量 87
(五)应变的相容方程 89
§4.3 本构关系 91
(一)线性弹性体的本构关系 91
(二)各向同性线性弹性体的本构关系 93
(三)粘性流体的本构关系 95
§4.4 连续介质力学的基本方程 95
(一)各向同性弹性体的拉梅方程 95
(二)不可压缩粘性流体的纳维—斯托克斯方程 96
附录 99
习题 106
习题答案 113