图书介绍

数学分析复习与习题解答pdf电子书版本下载

数学分析复习与习题解答
  • 李锦才编 著
  • 出版社: 武汉:武汉地质学院出版社
  • ISBN:
  • 出版时间:1985
  • 标注页数:193页
  • 文件大小:100MB
  • 文件页数:198页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

数学分析复习与习题解答PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 函数极限 连续 1

一、函数 1

1.定义 1

2.函数的表示法 1

3.函数的给出方法 1

4.函数的基本特性 1

5.反函数 2

6.基本初等函数的图形 2

二、极限 2

1.数列的极限 2

2.函数的极限 2

3.关于无穷小的定理 2

4.极限存在准则 2

5.关于极限的求法 3

6.补充几个极限定理 3

三、连续 4

1.定义 4

2.间断点 4

3.连续函数的基本性质 4

四、举例 5

第一章习题 8

第二章 导数及其应用(包括中值定理) 12

1.导数的定义 12

2.导数的求法 12

3.微分 13

4.高阶导数 13

5.微分中值定理 13

6.应用 14

7.举例 14

第二章 习题 17

第三章 不定积分 20

1.不定积分定义 86

2.不定积分性质 20

3.基本积分表 20

4.换元积分法 21

5.分部积分法 21

6.有理函数的积分 21

7.三角函数的有理式的积分 22

8.简单代数无理式的积分 22

9.举例 22

第三章习题 25

第四章 定积分及其应用 28

1.定积分定义 28

2.定积分的简单性质 中值定理 28

3.定积分与不定积分的关系 牛一莱公式 29

4.定积分的换元法 29

5.定积分的分部积分法 30

6.定积分的近似积分法 30

7.广义积分 30

8.含参数积分 31

9.Γ函数与β函数 33

10.应用 34

11.举例 36

第四章习题 39

第五章 无穷级数 42

一、常数项级数 42

1.无穷级数概念 42

2.无穷级数的基本性质 收敛的必要条件 42

3.正项级数 43

4.任意项级数 绝对收敛 44

二、函数项级数 44

5.函数项级数的一般概念 44

6.均匀收敛及均匀收敛级数的基本性质 44

三、幂级数 45

7.幂级数的收敛半径 45

8.幂级数的运算 46

9.幂级数的微分与积分 46

10.泰勒级数 46

11.初等函数的展开 47

12.泰勒级数应用于近似计算 47

13.举例 47

14.?? 51

第六章 付里叶级数 55

1.三角级数 55

2.尤拉——付里叶公式 56

3.付里叶级数 56

4.偶函数及奇函数的展式 57

5.函数展为正弦或余弦级数 57

6.任意区间上的付里叶级数 57

7.举例 58

第六章习题 59

第七章多元函数的微分法及其应用 61

1.二元函数的极限与连续性 61

2.偏导数 62

3.全增量及全微分 62

4.复合函数的微分法 63

5.隐函数及其微分法 64

6.空间曲线的切线及法平面 64

7.曲面的切平面及法线 64

8.二元函数的泰勒公式 65

9.多元函数的极值 65

10.条件极值——拉格朗日乘数法 65

11.举例 66

第七章习题 70

第八章 重积分及其应用 74

1.二重积分定义 74

2.二重积分的简单性质 中值定理 74

3.二重积分的计算法(直角坐标) 75

4.利用极坐标计算二重积分 75

5.三重积分及其计算法 76

6.三重积分在柱坐标系中的计算 76

7.三重积分在球坐标系中的计算 77

8.重积分的换元法 77

9.曲面的面积 78

10.重积分在静力学中的应用 79

11.举例 80

第八章习题 82

第九章 曲线积分及曲面积分 85

1.对坐标的曲线积分 85

2.对弧长的曲线积分 86

3.两类曲线积分之间的关系 86

4.格林公式 87

5.曲线积分与路径无关的条件 87

6.对坐标的曲面积分 87

7.对面积的曲面积分 88

8.两类曲面积分之间的关系 88

9.奥斯特罗格拉特斯基公式 88

10.斯托克斯公式 89

11.举例 89

第九章习题 91

第十章 微分方程 94

1.变量可分离的微分方程 94

2.齐次方程 94

3.一阶线性方程 94

4.全微分方程 95

5.高阶微分方程的几个特殊类型 96

6.线性微分方程解的结构 97

7.常系数齐次线性方程 97

8.常系数非齐次线性方程 97

9.尤拉方程 98

10.举例 99

第十章习题 103

附录 不等式应用举例 105

习题解答 111

第一章 111

第二章 118

第三章 128

第四章 137

第五章 145

第六章 155

第七章 161

第八章 170

第九章 177

第十章 185

精品推荐