图书介绍

高等数学 上 第2版pdf电子书版本下载

高等数学  上  第2版
  • 同济大学应用数学系编著 著
  • 出版社: 上海:同济大学出版社
  • ISBN:9787560824673
  • 出版时间:2007
  • 标注页数:393页
  • 文件大小:11MB
  • 文件页数:407页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

高等数学 上 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第二版前言 1

第一版前言 1

第一章 函数、极限与连续 1

导读 1

第一节 一元函数 3

一、集合 3

二、一元函数的概念 7

三、函数的几种简单特性 11

四、反函数与复合函数 13

五、初等函数 17

第二节 数列的极限 17

一、数列极限的概念 17

二、数列极限的性质 24

第三节 函数的极限 25

一、函数在有限点处的极限 26

二、函数在无穷远处的极限 30

三、函数极限的性质 31

第四节 无劳小与无穷大 33

一、无穷小 33

二、无穷大 37

第五节 极限的运算法则 40

一、极限的四则运算法则 40

二、复合函数的极限运算法则 45

第六节 极限存在准则与重要极限 47

一、准则Ⅰ 47

二、准则Ⅱ 51

第七节 无穷小的比较 56

一、无穷小的比较 56

二、等价无穷小 57

第八节 函数的连续性 60

一、函数连续的概念 60

二、连续函数的运算法则 63

三、初等函数的连续性 65

四、函数的间断点 66

第九节 闭区间上的连续函数 68

一、最大值与最小值定理 69

二、介值定理 70

要点解析 72

复习题一 76

第二章 导数与微分 82

导读 82

第一节 导数的概念 83

一、变化率问题举例 83

二、导数的定义 85

三、根据定义求导数举例 87

四、导数的几何意义 90

五、函数的可导性与连续性的关系 93

第二节 函数的四则运算的求导法则 95

一、函数的和、差的求导法则 95

二、函数的积的求导法则 97

三、函数的商的求导法则 100

第三节 反函数的导数 102

一、反函数的求导法则 103

二、指数函数的导数 104

三、反三角函数的导数 105

第四节 复合函数的求导法则 106

第五节 初等函数的导数和分段函数的求导举例 112

一、初等函数的导数 113

二、分段函数求导举例 114

第六节 高阶导数 115

第七节 隐函数的导数 由参数方程所确定的函数的导数相关变化率 119

一、隐函数的导数 119

二、由参数方程所确定的函数的导数 123

三、相关变化率 127

第八节 函数的微分 129

一、微分的定义 129

二、函数可微与可导之间的关系 131

三、微分的几何意义 133

四、函数的微分公式与微分法则 134

五、复合函数的微分法则与微分形式不变性 136

第九节 微分的应用 138

一、微分在近似计算中的应用 138

二、微分在误差估计中的应用 141

要点解析 144

复习题二 147

第三章 微分中值定理与导数的应用 151

导读 151

第一节 微分中值定理 151

第二节 洛必达法则 157

一、0/0和∞/∞型未定式的洛必达法则 158

二、其他未定式的计算 162

第三节 函数的单调性的判别法 165

第四节 函数的极值及其求法 169

第五节 最大值与最小值问题 176

一、函数在闭区间上的最大值和最小值 176

二、实际问题中的最大值和最小值 178

第六节 曲线的凹凸性与拐点 182

第七节 函数图形的描绘 186

一、曲线的水平渐近线与铅直渐近线 186

二、函数图形的描绘 187

第八节 曲线的曲率 192

一、平面曲线的曲率概念 192

二、曲率公式 194

第九节 方程的近似解 198

要点解析 200

复习题三 202

第四章 不定积分 206

导读 206

第一节 不定积分的概念、性质与简单计算 207

一、原函数与不定积分 207

二、基本积分表(210)三、不定积分的线性运算性质 211

第二节 不定积分的换元积分法 214

一、不定积分的第一类换元法 215

二、不定积分的第二类换元法 222

三、两类换元积分法的比较 225

第三节 不定积分的分部积分法 226

第四节有理函数的不定积分 232

一、有理函数的不定积分 232

二、三角函数有理式的不定积分 239

要点解析 242

复习题四 245

第五章 定积分及其应用 247

导读 247

第一节 定积分概念 248

一、定积分概念产生的实际背景 248

二、定积分的定义 252

三、定积分的几何意义 255

四、定积分的性质 258

第二节 微积分基本定理 262

一、变上限的定积分 263

二、牛顿-莱布尼兹公式 266

第三节 定积分的换元法与分部积分法 271

一、定积分的换元法 271

二、定积分的分部积分法 278

第四节 反常积分 282

一、无穷限的反常积分 282

二、无界函数的反常积分 285

第五节 定积分的几何应用举例 288

一、平面图形的面积 290

二、体积 294

三、平面曲线的弧长 298

第六节 定积分的物理应用举例 303

一、变力沿直线所作的功 303

二、水压力 307

三、引力 309

要点解析 310

复习题五 313

第六章 微分方程 317

导读 317

第一节 微分方程的基本概念 318

第二节 可分离变量的微分方程和齐次方程 321

一、可分离变量的微分方程 322

二、齐次型方程 327

第三节 一阶线性微分方程和伯努里方程 330

一、一阶线性微分方程 330

二、伯努利方程 333

第四节 可降阶的二阶微分方程 335

一、y″=f(x)型的微分方程 335

二、y″=f(x,y′)型的微分方程 336

三、y″=f(y,y′)型的微分方程 337

第五节 线性微分方程解的结构 338

第六节 二阶常系数线性微分方程 341

一、二阶常系数齐次线性微分方程 341

二、二阶常系数非齐次线性微分方程 346

三、二阶常系数线性微分方程的应用举例 351

要点解析 358

复习题六 360

复习题答案与提示 365

高等数学习题册(上)答案与提示 374

附录Ⅰ基本初等函数的图形及其主要性质 388

附录Ⅱ几种常用的曲线 391

精品推荐