图书介绍

Lectures on Differential and Integral Equationspdf电子书版本下载

Lectures on Differential and Integral Equations
  • 出版社: Inc.
  • ISBN:
  • 出版时间:1960
  • 标注页数:220页
  • 文件大小:52MB
  • 文件页数:230页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Lectures on Differential and Integral EquationsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1.THE INITIAL VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS 1

1.Successive Approximations 1

1.Existence and uniqueness of the solution of the ordinary differential equation of the first order 1

2.Remark on approximate solutions 6

3.Integration constants 8

4.Solution by power series expansion 10

5.Differential equations containing parameters.Perturbation theory 14

6.Existence and uniqueness of the solution of a system of differential equations 17

2.Linear Differential Equations of the nth Order 21

7.Singular points for linear differential equations 21

8.Fundamental system of solutions 23

9.Wronskian.Liouville's formula 27

10.Lagrange's method of variation of constants and D'Alembert's method of reduction of order 29

11.Linear differential equations with constant coefficients 31

3.Second Order Differential Equations of the Fuchs Type 37

12.Regular singular points.Fuchs'theorem 37

13.Gauss differential equations 45

14.Legendre differential equations 48

15.Bessel differential equations 51

Chapter 2.THE BOUNDARY VALUE PROBLEM FOR LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER 61

1.Boundary Value Problem 61

16.Boundary value problem of the Sturm-Liouville type 61

17.Green's function.Reduction to integral equations 64

18.Periodic solutions.Generalized Green's function 68

2.Hilbert-Schmidt Theory of Integral Equations with Symmetric Kernels 76

19.The Ascoli-Arzelà theorem 76

20.Existence proof for the eigenvalues 80

21.The Bessel inequality.The Hilbert-Schmidt expansion theorem 83

22.Approximations of eigenvalues.Rayleigh's principle and the Kryloff-Weinstein theorem 91

23.Inhomogeneous integral equations 96

24.Hermite,Laguerre and Legendre polynomials 100

3.Asymptotic Expression of Eigenvalues and Eigenfunctions,Liouville's Method 110

25.The Liouville transformation 110

26.Asymptotic expressions of eigenvalues and eigenfunctions 112

Chapter 3.FREDHOLM INTEGRAL EQUATIONS 115

1.Fredholm Alternative Theorem 115

27.The case when ∫ba∫ba|K(s,t)|2 ds dt<1 115

28.The general case 118

29.Fredholm's alternative theorem 125

2.The Schmidt Expansion Theorem and the Mercer Expansion Theorem 127

30.Operator-theoretical notations 127

31.The Schmidt expansion theorem 128

32.Application to Fredholm integral equation of the first kind 131

33.Positive definite kernels.Mercer's expansion theorem 132

3.Singular Integral Equations 139

34.Discontinuous kernels 140

35.Examples.Band spectrum 141

Chapter 4.VOLTERRA INTEGRAL EQUATIONS 145

1.Volterra Integral Equations of the Second Kind 145

36.Existence and uniqueness of solutions 145

37.Resolvent kernels 147

38.Application to linear differential equations 149

39.The singular kernel P(s,t)/(s,t)a 151

2.Volterra Integral Equations of the First Kind 153

40.Reduction to integral equations of the second kind 153

41.Abel integral equations 154

Chapter 5.THE GENERAL EXPANSION THEOREM(WEYL-STONE-TITCHMARSH-KODAIRA'S THEOREM) 159

1.Classification of Singular Boundary Points 160

42.Green's formula 160

43.Limit point case and limit circle case 162

44.Definition of m1(λ) and m2(λ) 170

2.The General Expansion Theorem 173

45.Application of the Hilbert-Schmidt expansion theorem 173

46.Helly's theorem and Poisson's integral formula 177

47.The Weyl-Stone-Titchmarsh-Kodaira theorem 183

48.Density matrix 190

3.Examples 192

49.The Fourier series expansion 192

50.The Fourier integral theorem 194

51.The Hermite function expansion 196

52.The Hankel integral theorem 199

53.The Fourier-Bessel series expansion 202

54.The Laguerre function expansion 205

Chapter 6.NON-LINEAR INTEGRAL EQUATIONS 209

55.Non-linear Volterra integral equations 209

56.Non-linear Fredholm integral equations 210

Appendix.FROM THE THEORY OF FUNCTIONS OF A COMPLEX VARIABLE 213

A theorem on normal family of regular functions(Part 44) 213

Hurwitz's theorem(Part 47) 213

The Poisson integral formula(Part 46) 214

BIBLIOGRAPHY 217

INDEX 219

精品推荐