图书介绍

动力系统的周期解与分支理论pdf电子书版本下载

动力系统的周期解与分支理论
  • 韩茂安著 著
  • 出版社: 北京:科学出版社
  • ISBN:7030098099
  • 出版时间:2002
  • 标注页数:471页
  • 文件大小:9MB
  • 文件页数:481页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

动力系统的周期解与分支理论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 奇点及其局部性质 1

1.线性系统 1

1.1.常系数线性系统 1

1.2.周期线性系统. 5

2.隐函数定理与解的分析性质 12

2.1.解的分析性质. 12

2.2.隐函数的存在性与光滑性 16

3.等价性、稳定流形与中心流形 18

3.1.等价性 18

3.2.稳定流形与中心流形 20

4.稳定性与.Lapunov函数 30

4.1.稳定性的基本概念与定理 30

4.2.Liénard方程奇点的稳定性 35

5.指标理论与平面高次奇点 41

5.1.指标概念与公式 41

5.2.解析系统的高次奇点判定 44

5.3.无穷远奇点 46

6.规范型理论与应用 53

6.1.规范型基本理论 53

6.2.应用:几类方程的规范型 59

习题 68

第二章Poincarén映射与周期解 72

1.双曲闭轨与曲线坐标 72

1.1.闭轨的稳定流形定理 72

1.2.闭轨附近的曲线坐标 78

2.周期轨道的自治扰动 82

2.1.双曲闭轨的扰动 83

2.2.二维系统的闭轨分支 84

2.3.三维系统的闭轨分支 92

3.周期系统的周期解 97

3.1.调和解与次调和解 97

3.2.压缩映像原理方法 103

3.3.隐函数定理方法 110

4.平均方法与周期解的简单分支 121

4.1.平均方法 121

4.2.二重鞍结点与双曲极限环的周期扰动 128

5.Poincaré分支与Melnikov函数 138

5.1.基本假设与引理 138

5.2.次调和解与次调和Melnikov函数 140

5.3.周期轨道的Poincaaré分支 157

习题 162

第三章 周期解的局部分支理论 166

1.Liapunov-Schmidt方法 166

1.1.基本定理 166

1.2.分支函数与周期解 169

2.Hopf分支与一类退化Hopf分支 176

2.1Hopf分支定理 176

2.2.一类退化Hopf分支 183

3.周期解的共振分支 187

3.1.分支函数的建立 187

3.2.四维系统的局部周期轨道 191

4.1.周期扰动系统 198

4.周期解分支的初等方法 198

4.2.自治扰动系统 204

5.非半单特征值情况下的分支 209

5.1.分支方程与闭轨的惟一惟二性条件 210

5.2.分支量的计算方法 221

6.非半单线性系统的扰动 227

6.1.分支方程与闭轨的个数判定. 228

6.2.六维系统更多个闭轨的分支. 233

习题 243

第四章 平面系统的极限环 247

1.Hopf分支与环性数 247

1.1.后继函数与焦点量 247

1.2.Hopf环性数与极限环的分文 253

2.Poincaré分支与环性数 269

2.1Poincaré分支的一般理论 270

2.2.一类Liénard方程的环性数 278

3.同宿分支 287

3.1.极限环的惟一性 287

3.2.极限环的惟二性 300

3.3.同宿环的稳定性与多个极限环的分支 322

4.双同宿分支 332

4.1.非退化条件下双同宿的分支 332

4.2.双同宿分支的进一步结果 336

4.3.一类三次系统的双同宿分支 343

5.异宿环的分支 346

5.1.异宿环的稳定性 346

5.2.宿环的扰动分支 350

6.两类双参数扰动系统 358

6.1.两类Melnikov函数单调性 359

6.2.一类具有两点异宿环的多项式系统 360

6.3.一类具有三点异宿环的多项式系统 365

习题 374

第五章 平面系统的极限环(续) 378

1.旋转向量场理论 378

1.1.旋转向量场的概念与不相交定理 378

1.2.旋转向量场族中的.Hopf分支与奇闭轨分支 387

2.极限环的存在性与惟一性 391

2.1.极限环的不存在性 391

2.2.Poincaré-Bendixaon定理与极限环的存在性 394

2.3.Lulac函数法与多个极限环 398

3.Liénard系统的.Hopf分支 405

3.1.幂级数方法 406

3.2.曲线积分方法 417

4.Liénard系统的Poincaré分支 424

4.1.包围一个奇点的极限环 424

4.2.包围三个奇点的极限环 437

4.3.应用举例 445

5.Liénard系统的全局分支 450

5.1.全局分支中极限环的个数 450

5.2.几类多项式系统的环性数 455

5.3.一类n次Liénard方程的环性数 457

习题 460

参考文献 463

精品推荐