图书介绍

计算方法pdf电子书版本下载

计算方法
  • 徐士良编著 著
  • 出版社: 北京:人民邮电出版社
  • ISBN:9787115195333
  • 出版时间:2009
  • 标注页数:252页
  • 文件大小:9MB
  • 文件页数:260页
  • 主题词:计算方法-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

计算方法PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 数值计算的误差 1

1.1 误差类型 1

1.2 误差定义 2

1.3 有效数字 4

1.4 数值计算的运算误差 6

1.5 误差的传播与计算不稳定性 11

习题1 13

第2章 线性代数方程组与矩阵 15

2.1 矩阵的几个定义 15

2.2 解的唯一性 17

2.3 高斯消去法 18

2.3.1 高斯消去法的基本原理 18

2.3.2 选主元 20

2.4 LU分解 24

2.4.1 系数矩阵的LU分解 25

2.4.2 用LU分解求解方程组 28

2.5 乔里斯基分解 30

2.5.1 对称正定矩阵的乔里斯基分解 30

2.5.2 用乔里斯基分解求解方程组 33

2.6 高斯-约当消去法 36

2.7 高斯-约当法求矩阵的逆 39

2.7.1 原地工作的矩阵求逆 40

2.7.2 全选主元 44

2.8 求解三对角线方程组 46

2.9 高斯-赛德尔迭代法 50

2.10 关于病态系统 54

习题2 55

第3章 矩阵的特征值与特征向量 57

3.1 关于矩阵特征值与特征向量的基本概念 57

3.2 特征向量的正交性与规格化正交性 60

3.3 乘幂法 61

3.4 求对称矩阵特征值的雅可比方法 66

3.5 求对称矩阵特征值的豪斯荷尔德方法 77

3.5.1 用豪斯荷尔德变换将一般实对称矩阵约化成对称三对角矩阵 77

3.5.2 确定对称三对角矩阵的特征值 80

3.6 用QR方法求一般实矩阵的全部特征值 83

3.6.1 用初等相似变换将一般实矩阵约化成上H矩阵 84

3.6.2 QR方法确定上H矩阵的特征值 86

习题3 92

第4章 非线性方程 94

4.1 图解法 94

4.2 逐步扫描法 95

4.3 对分法 96

4.4 试位法 98

4.5 逐次代入法 100

4.5.1 简单迭代法 100

4.5.2 埃特金迭代法 102

4.6 牛顿法 105

4.7 割线法 108

4.8 多项式方程的求解 108

4.9 非线性方程组的求解 113

4.9.1 梯度法 113

4.9.2 拟牛顿法 116

习题4 121

第5章 插值法 123

5.1 多项式插值 123

5.2 牛顿向前差分公式 125

5.3 牛顿向后差分公式 127

5.4 牛顿差商公式 128

5.5 拉格朗日插值公式 130

5.6 样条插值 134

习题5 141

第6章 函数逼近 143

6.1 正交多项式及其构造 143

6.2 最佳二乘逼近 144

6.2.1 二乘逼近 144

6.2.2 最佳二乘逼近多项式 144

6.3 切比雪夫逼近 147

6.3.1 切比雪夫多项式 147

6.3.2 用切比雪夫级数计算函数的近似值 148

6.3.3 用切比雪夫多项式降低逼近多项式的次数 152

习题6 154

第7章 曲线拟合 156

7.1 曲线拟合的最小二乘法 156

7.2 线性拟合 157

7.2.1 一般的线性拟合 157

7.2.2 半对数数据拟合 159

7.2.3 对数数据拟合 161

7.2.4 相关系数 163

7.3 多变量线性拟合 164

7.4 多项式拟合 169

7.5 使用正交多项式的拟合 171

习题7 176

第8章 数值积分 177

8.1 牛顿-柯特斯积分公式 178

8.2 变步长求积法 181

8.2.1 变步长梯形求积法 181

8.2.2 变步长辛卜生求积法 183

8.3 龙贝格求积法 185

8.4 高斯求积法 188

8.4.1 高斯积分公式 188

8.4.2 几种常用的高斯求积公式 189

8.5 数据的积分 195

8.6 开放积分公式 197

习题8 198

第9章 数值微分 199

9.1 差分公式 199

9.2 理查森外推法 203

9.3 拉格朗日微分公式 206

习题9 208

第10章 常微分方程的初值问题 209

10.1 常微分方程初值问题的数值解 209

10.2 欧拉方法 211

10.2.1 基本公式 211

10.2.2 改进欧拉公式 212

10.3 步长的自动选择 216

10.4 龙格-库塔法 219

10.5 阿当姆斯预报—校正法 224

10.6 常微分方程组 228

10.7 高阶微分方程 231

10.8 刚性微分方程 232

习题10 234

第11章 常微分方程的边值问题 236

11.1 试射法 236

11.2 有限差分法 241

习题11 245

部分参考答案 246

参考文献 252

精品推荐